Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid

被引:33
作者
Xin, Zhuo [1 ]
Zhang, Jiahui [1 ]
Sordakis, Katerina [2 ]
Beller, Matthias [3 ]
Du, Chen-Xia [4 ]
Laurenczy, Gabor [2 ]
Li, Yuehui [1 ]
机构
[1] Chinese Acad Sci, Ctr Excellence Mol Synth, Suzhou Res Inst LICP, LICP,State Key Lab Oxo Synth & Select Oxidat, Lanzhou 730000, Gansu, Peoples R China
[2] Ecole Polytech Fed Lausanne, Inst Sci & Ingn Chim, CH-1015 Lausanne, Switzerland
[3] Univ Rostock, Leibniz Inst Katalyse Ev, Albert Einstein Str 29a, D-18059 Rostock, Germany
[4] Zhengzhou Univ, Coll Chem & Mol Engn, Zhengzhou 450001, Henan, Peoples R China
关键词
dehydrogenation; formic acid; homogeneous catalysis; hydrogen; ruthenium; CARBON-DIOXIDE; CO2; HYDROGENATION; METHANOL DEHYDROGENATION; SELECTIVE DEHYDROGENATION; REVERSIBLE HYDROGENATION; ROOM-TEMPERATURE; IRON CATALYST; DECOMPOSITION; GENERATION; ENERGY;
D O I
10.1002/cssc.201800408
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogen is of fundamental importance for the construction of modern clean-energy supply systems. In this context, the catalytic dehydrogenation of formic acid (FA) is a convenient method to generate H-2 gas from an easily available liquid. One of the issues associated with current catalytic dehydrogenation systems is insufficient stability. Here, we present a robust and recyclable system for FA dehydrogenation by combining a ruthenium 1,1,1-tris(diphenylphosphinomethyl)ethane complex and aluminum trifluoromethanesulfonate (Al(OTf)(3)). This robust system allows steady H-2 production under pressure and recycling for an additional 14 runs without any apparent loss of activity (turnover frequencies up to 1920h(-1), turnover numbers up to 20000). Notably, the catalyst can also be used for the dehydrogenation of formates and the reverse hydrogenation of bicarbonates and CO2.
引用
收藏
页码:2077 / 2082
页数:6
相关论文
共 77 条
[1]  
[Anonymous], 1995, Angew. Chem., DOI DOI 10.1002/ANGE.19951072005
[2]   Simple and recyclable ionic liquid based system for the selective decomposition of formic acid to hydrogen and carbon dioxide [J].
Berger, M. E. M. ;
Assenbaum, D. ;
Taccardi, N. ;
Spiecker, E. ;
Wasserscheid, P. .
GREEN CHEMISTRY, 2011, 13 (06) :1411-1415
[3]   Reversible Hydrogenation of Carbon Dioxide to Formic Acid and Methanol: Lewis Acid Enhancement of Base Metal Catalysts [J].
Bernskoetter, Wesley H. ;
Hazari, Nilay .
ACCOUNTS OF CHEMICAL RESEARCH, 2017, 50 (04) :1049-1058
[4]  
Bi Q., 2016, ANGEW CHEM INT EDIT, V128, P12028, DOI DOI 10.1002/CCTC.201501116
[5]   Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon [J].
Bi, Qing-Yuan ;
Lin, Jian-Dong ;
Liu, Yong-Mei ;
He, He-Yong ;
Huang, Fu-Qiang ;
Cao, Yong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (39) :11849-11853
[6]  
Bianchini C, 2001, HELV CHIM ACTA, V84, P2895
[7]   Base-Free Methanol Dehydrogenation Using a Pincer-Supported Iron Compound and Lewis Acid Co-catalyst [J].
Bielinski, Elizabeth A. ;
Foerster, Moritz ;
Zhang, Yuanyuan ;
Bernskoetter, Wesley H. ;
Hazari, Nilay ;
Holthausen, Max C. .
ACS CATALYSIS, 2015, 5 (04) :2404-2415
[8]   Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst [J].
Bielinski, Elizabeth A. ;
Lagaditis, Paraskevi O. ;
Zhang, Yuanyuan ;
Mercado, Brandon Q. ;
Wuertele, Christian ;
Bernskoetter, Wesley H. ;
Hazari, Nilay ;
Schneider, Sven .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (29) :10234-10237
[9]   Towards the development of a hydrogen battery [J].
Boddien, Albert ;
Federsel, Christopher ;
Sponholz, Peter ;
Mellmann, Doerthe ;
Jackstell, Ralf ;
Junge, Henrik ;
Laurenczy, Gabor ;
Beller, Matthias .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (10) :8907-8911
[10]   Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst [J].
Boddien, Albert ;
Mellmann, Doerthe ;
Gaertner, Felix ;
Jackstell, Ralf ;
Junge, Henrik ;
Dyson, Paul J. ;
Laurenczy, Gabor ;
Ludwig, Ralf ;
Beller, Matthias .
SCIENCE, 2011, 333 (6050) :1733-1736