The maximum principle for the three chains completion problem

被引:1
作者
Foias, C [1 ]
Frazho, AE
Gohberg, I
Kaashoek, MA
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA
[3] Tel Aviv Univ, Raymond & Beverly Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
[4] Vrije Univ Amsterdam, Fac Wiskunde Informat, NL-1081 HV Amsterdam, Netherlands
关键词
D O I
10.1007/BF01195877
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A time-variant version of the maximum principle for the central solution in the commutant lifting theorem is given. The main result is illustrated on the Parrott completion problem.
引用
收藏
页码:67 / 82
页数:16
相关论文
共 11 条
[1]  
[Anonymous], HARMONIC ANAL OPERAT
[2]   UNITARY INTERPOLANTS, FACTORIZATION INDEXES AND INFINITE HANKEL BLOCK MATRICES [J].
DYM, H ;
GOHBERG, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 54 (03) :229-289
[3]  
DYM H, 1982, J ANAL MATH, V42, P83
[4]   A time-variant version of the commutant lifting theorem and nonstationary interpolation problems [J].
Foias, C ;
Frazho, AE ;
Gohberg, I ;
Kaashoek, MA .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 28 (02) :158-190
[5]   CENTRAL INTERTWINING LIFTING, MAXIMUM-ENTROPY AND THEIR PERMANENCE [J].
FOIAS, C ;
FRAZHO, A ;
GOHBERG, I .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1994, 18 (02) :166-201
[6]   Discrete time-variant interpolation as classical interpolation with an operator argument [J].
Foias, C ;
Frazho, AE ;
Gohberg, I ;
Kaashoek, MA .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1996, 26 (04) :371-403
[7]  
FOIAS C, 1993, OPER THEOR, V64, P119
[8]  
FOIAS C, IN PRESS INTEGRAL EQ
[9]  
Foias C., 1990, OT, V44
[10]   A MAXIMUM-ENTROPY PRINCIPLE IN THE GENERAL FRAMEWORK OF THE BAND METHOD [J].
GOHBERG, I ;
KAASHOEK, MA ;
WOERDEMAN, HJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 95 (02) :231-254