Symbolic walk in regular networks

被引:0
作者
Ermann, Leonardo [1 ]
Carlo, Gabriel G. [1 ]
机构
[1] Comis Nacl Energia Atom, Dept Fis Gerencia Invest & Aplicac, RA-1429 Buenos Aires, DF, Argentina
关键词
chaotic systems; complex networks; symbolic dynamics;
D O I
10.1088/1751-8113/48/3/035102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find that a symbolic walk (SW)-performed by a walker with memory given by a Bernoulli shift-is able to distinguish between the random or chaotic topology of a given network. We show this result by means of studying the undirected baker network, which is defined by following the Ulam approach for the baker transformation in order to introduce the effect of deterministic chaos into its structure. The chaotic topology is revealed through the central role played by the nodes associated with the positions corresponding to the shortest periodic orbits of the generating map. They are the overwhelmingly most visited nodes in the limit cycles at which the SW asymptotically arrives. Our findings contribute to linking deterministic chaotic dynamics with the properties of networks constructed using the Ulam approach.
引用
收藏
页数:13
相关论文
共 22 条
[1]   Internet -: Diameter of the World-Wide Web [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 1999, 401 (6749) :130-131
[2]  
[Anonymous], 1994, Aspects and Applications of the Random Walk
[3]   A Biased Random Walk Routing Protocol for Wireless Sensor Networks: The Lukewarm Potato Protocol [J].
Beraldi, Roberto ;
Baldoni, Roberto ;
Prakash, Ravi .
IEEE TRANSACTIONS ON MOBILE COMPUTING, 2010, 9 (11) :1649-1661
[4]   On the robustness of Spanish telecommunication networks [J].
Cardenas, J. P. ;
Mouronte, M. L. ;
Moyano, L. G. ;
Vargas, M. L. ;
Benito, R. M. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (19) :4209-4216
[5]  
Cohen R., 2010, Complex networks: structure, robustness and function
[6]  
Erdos P., 1959, PUBL MATH-DEBRECEN, V6, P290, DOI DOI 10.5486/PMD.1959.6.3-4.12
[7]   Ecological analysis of world trade [J].
Ermann, L. ;
Shepelyansky, D. L. .
PHYSICS LETTERS A, 2013, 377 (3-4) :250-256
[8]  
Ermann L, 2011, ACTA PHYS POL A, V120, pA158
[9]   Ulam method and fractal Weyl law for Perron-Frobenius operators [J].
Ermann, L. ;
Shepelyansky, D. L. .
EUROPEAN PHYSICAL JOURNAL B, 2010, 75 (03) :299-304
[10]   Google matrix and Ulam networks of intermittency maps [J].
Ermann, L. ;
Shepelyansky, D. L. .
PHYSICAL REVIEW E, 2010, 81 (03)