A prolonged exposure of Ti-Si-B-C nanocomposite coating in 3.5 wt% NaCl solution: Electrochemical and morphological analysis

被引:33
作者
Mahato, Parikshit [1 ]
Mishra, Suman K. [2 ]
Murmu, Manilal [1 ,3 ]
Murmu, Naresh Chandra [1 ,3 ]
Hirani, Harish [1 ,4 ]
Banerjee, Priyabrata [1 ,3 ]
机构
[1] CSIR Cent Mech Engn Res Inst, Durgapur 713209, India
[2] CSIR Natl Met Lab, Jamshedpur 831007, Bihar, India
[3] Acad Sci & Innovat Res, Ghaziabad 201002, India
[4] Indian Inst Technol, Mech Engn Dept, New Delhi 110016, India
关键词
SS; 304; Sputtering; Ti-Si-B-C nanocomposite coating; Electrochemical behaviour; Surface morphology; MILD-STEEL SURFACE; CORROSION BEHAVIOR; HARD COATINGS; TIALN COATINGS; HCL MEDIUM; RESISTANCE; SUPERHARD; MICROSTRUCTURE; PROTECTION; CRN;
D O I
10.1016/j.surfcoat.2019.07.039
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The electrochemical behaviour of magnetron sputtered Ti-Si-B-C nanocomposite coating on SS 304 substrate has been examined using potentiodynamic polarization and electrochemical impedance spectroscopy after long time immersion (1, 20, 40, 70 days) in 3.5 wt% NaCl solution. The surface morphology, elemental composition and surface topography of coated and uncoated surfaces have been analyzed using FESEM, EDX spectroscopy and AFM, respectively. The XRD study revealed the presence of TiB2 and TiSi2 phases in the film which were exposed to 70 days immersion test. It implies that the grains of TiB2 and TiSi2 have grown on the Ti-Si-B-C coating. The results obtained from the electrochemical measurements of sputtered coatings showed the increase of corrosion inhibition capability for Ti-Si-B-C coating compared to SS 304 as the immersion time increases in simulated marine environment.
引用
收藏
页码:477 / 488
页数:12
相关论文
共 78 条
[31]   A Novel Approach for the Evaluation of Under Deposit Corrosion in Marine Environments Using Combined Analysis by Electrochemical Impedance Spectroscopy and Electrochemical Noise [J].
Hoseinieh, S. M. ;
Homborg, A. M. ;
Shahrabi, T. ;
Mol, J. M. C. ;
Ramezanzadeh, B. .
ELECTROCHIMICA ACTA, 2016, 217 :226-241
[32]   Improvement of the corrosion resistance of PVD hard coating-substrate systems [J].
Jehn, HA .
SURFACE & COATINGS TECHNOLOGY, 2000, 125 (1-3) :212-217
[33]   Effective inhibition of mild steel corrosion in 1 M hydrochloric acid using substituted triazines: an experimental and theoretical study [J].
John, Sam ;
Joseph, Abraham .
RSC ADVANCES, 2012, 2 (26) :9944-9951
[34]   CPE analysis by local electrochemical impedance spectroscopy [J].
Jorcin, JB ;
Orazem, ME ;
Pébère, N ;
Tribollet, B .
ELECTROCHIMICA ACTA, 2006, 51 (8-9) :1473-1479
[35]   A quantitative study of the hardness of a superhard nanocrystalline titanium nitride/silicon nitride coating [J].
Kauffmann, F ;
Ji, BH ;
Dehm, G ;
Gao, HJ ;
Arzt, E .
SCRIPTA MATERIALIA, 2005, 52 (12) :1269-1274
[36]  
Kumar K S R M, 2012, ELIXER CORROSION, V53, P11715
[37]   Effect of La3+ substitution on the structural and magnetocrystalline anisotropy of nanocrystalline cobalt ferrite (CoFe2-xLaxO4) [J].
Kumar, Lawrence ;
Kar, Manoranjan .
CERAMICS INTERNATIONAL, 2012, 38 (06) :4771-4782
[38]   Electrochemical impedance spectroscopy (EIS) study on corrosion performance of CrAlSiN coated steels in 3.5 wt.% NaCl solution [J].
Lin, C. H. ;
Duh, J. G. .
SURFACE & COATINGS TECHNOLOGY, 2009, 204 (6-7) :784-787
[39]   Structure and corrosion properties of PVD Cr-N coatings [J].
Liu, C ;
Bi, Q ;
Ziegele, H ;
Leyland, A ;
Matthews, A .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 2002, 20 (03) :772-780
[40]   Effect of nitrogen on mechanical, oxidation and structural behaviour of Ti-Si-B-C-N nanocomposite hard coatings deposited by DC sputtering [J].
Mahato, P. ;
Singh, R. J. ;
Pathak, L. C. ;
Mishra, S. K. .
SURFACE AND INTERFACE ANALYSIS, 2016, 48 (10) :1080-1089