Global Large Solutions to the Navier-Stokes-Nernst-Planck-Poisson Equations

被引:10
作者
Ma, Haitao [1 ]
机构
[1] South China Univ Technol, Guangzhou 510640, Guangdong, Peoples R China
关键词
Global well-posedness; Navier-Stokes-Nernst-Planck-Poisson equations; Besov space; WELL-POSEDNESS; SYSTEM;
D O I
10.1007/s10440-018-0167-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we obtain a new wellposedness result to the d-dimensional Navier-Stokes-Nernst-Planck-Poisson equations. Our result implies that, if the initial charge densities of a negatively and positively charged species are close enough, we can get global solutions only needing smallness condition imposed on initial velocity. The structure coming from equations and the weighted Chemin-Lerner type space are crucial in our arguments.
引用
收藏
页码:129 / 140
页数:12
相关论文
共 16 条
[1]  
Bahouri H., 2011, GRUND MATH WISS, P343
[2]   Diffuse-charge dynamics in electrochemical systems [J].
Bazant, Martin Z. ;
Thornton, Katsuyo ;
Ajdari, Armand .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (2 1) :021506-1
[3]   Local theory in critical spaces for compressible viscous and heat-conductive gases [J].
Danchin, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (7-8) :1183-1233
[4]   Well-posedness for the Navier-Stokes-Nernst-Planck-Poisson system in Triebel-Lizorkin space and Besov space with negative indices [J].
Deng, Chao ;
Zhao, Jihong ;
Cui, Shangbin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (01) :392-405
[5]   Well-posedness of a dissipative nonlinear electrohydrodynamic system in modulation spaces [J].
Deng, Chao ;
Zhao, Jihong ;
Cui, Shangbin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (07) :2088-2100
[6]   Global weak solutions for an incompressible charged fluid with multi-scale couplings: Initial-boundary-value problem [J].
Jerome, Joseph W. ;
Sacco, Riccardo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E2487-E2497
[7]   Analytical approaches to charge transport in a moving medium [J].
Jerome, JW .
TRANSPORT THEORY AND STATISTICAL PHYSICS, 2002, 31 (4-6) :333-366
[8]   Some Analytical Issues for Elastic Complex Fluids [J].
Lin, Fanghua .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (07) :893-919
[9]   WELL-POSEDNESS FOR THE 3D INCOMPRESSIBLE NEMATIC LIQUID CRYSTAL SYSTEM IN THE CRITICAL LP FRAMEWORK [J].
Liu, Qiao ;
Zhang, Ting ;
Zhao, Jihong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (01) :371-402
[10]  
Newman J., 2004, Electrochemical systems, V3rd, P45