SPECTRAL-SPATIAL HYPERSPECTRAL UNMIXING IN TRANSFORMED DOMAINS

被引:2
作者
Xu, Chenguang [1 ]
Zhang, Shaoquan [1 ]
Deng, Chengzhi [1 ]
Wu, Zhaoming [1 ,2 ]
Yang, Jiaheng [1 ]
Long, Guang [1 ]
Cao, Longfei [1 ]
机构
[1] Nanchang Inst Technol, Jiangxi Prov Key Lab Water Informat Cooperat Sens, Nanchang 330099, Jiangxi, Peoples R China
[2] Ahead Software Co LTD, Nanchang 330008, Jiangxi, Peoples R China
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Transformed domains; Sparse unmixing; Spatially-weighted unmixing;
D O I
10.1109/IGARSS39084.2020.9324094
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral unmixing is a technique for selecting endmembers (pure spectral constituents) and their abundances (proportions). Recently, sparse unmixing is a semi-supervised method in which mixed pixels are represented in the form of combinations of a number of pure spectral signatures from a large spectral library. Compared with other methods, the sparse unmixing method exhibits significant advantages. However, most of these sparse unmixing methods were implemented in spatial domain, where the information is too scattered, redundant and susceptible to noise. In this paper, we propose a new unmixing method called spectral-spatial weighted sparse unmixing in the transform domain (SSTSU) to impose the abundance sparsity and enhance the anti-noise performance. The experimental results show that the proposed algorithm has better anti-noise performance and unmixing results compared with other advanced sparse unmixing methods.
引用
收藏
页码:2169 / 2172
页数:4
相关论文
共 13 条
[1]  
Guo Z., 2009, INT SOC OPTICS PHOTO, V7334
[2]  
Iordache M. D., 2010, IEEE GEOSC RS SOC P, P1, DOI [DOI 10.1109/WHISPERS.2010.5594888, 10.1109/WHISPERS.2010.5594888]
[3]   Sparse Unmixing of Hyperspectral Data [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :2014-2039
[4]   Collaborative Sparse Regression for Hyperspectral Unmixing [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01) :341-354
[5]   Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (11) :4484-4502
[6]  
Jensen R. John, 2018, COMPRESSED SENSING, V2, P65
[7]   Hyperspectral Unmixing via L1/2 Sparsity-Constrained Nonnegative Matrix Factorization [J].
Qian, Yuntao ;
Jia, Sen ;
Zhou, Jun ;
Robles-Kelly, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (11) :4282-4297
[8]   NMF with Sparse Regularizations in Transformed Domains [J].
Rapin, Jeremy ;
Bobin, Jerome ;
Larue, Anthony ;
Starck, Jean-Luc .
SIAM JOURNAL ON IMAGING SCIENCES, 2014, 7 (04) :2020-2047
[9]   Sparse Unmixing of Hyperspectral Data Using Spectral A Priori Information [J].
Tang, Wei ;
Shi, Zhenwei ;
Wu, Ying ;
Zhang, Changshui .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (02) :770-783
[10]   DOUBLE REWEIGHTED SPARSE REGRESSION FOR HYPERSPECTRAL UNMIXING [J].
Wang, Rui ;
Li, Heng-Chao ;
Liao, Wenzhi ;
Pizurica, Aleksandra .
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, :6986-6989