共 36 条
An Unsupervised Compressed Sensing Algorithm for Multi-Channel Neural Recording and Spike Sorting
被引:14
作者:
Xiong, Tao
[1
]
Zhang, Jie
[2
]
Martinez-Rubio, Clarissa
[3
]
Thakur, Chetan S.
[4
]
Eskandar, Emad N.
[5
,6
]
Chin, Sang Peter
[1
,2
,7
]
Etienne-Cummings, Ralph
[1
]
Tran, Trac D.
[1
]
机构:
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[2] MIT, Dept Brain & Cognit Sci, E25-618, Cambridge, MA 02139 USA
[3] Natl Parkinson Fdn, Miami, FL 33131 USA
[4] Indian Inst Sci, Dept Elect Syst Engn, Bengaluru 560012, India
[5] Harvard Med Sch, Boston, MA 02115 USA
[6] Massachusetts Gen Hosp, Dept Neurosurg, Boston, MA 02114 USA
[7] Boston Univ, Dept Comp Sci, 111 Cummington St, Boston, MA 02215 USA
基金:
美国国家科学基金会;
关键词:
Compressed sensing;
unsupervised;
dictionary learning;
neural recording;
spike sorting;
multi-channel;
DICTIONARY LEARNING ALGORITHM;
SPARSE REPRESENTATION;
STRIATE CORTEX;
SYSTEM;
D O I:
10.1109/TNSRE.2018.2830354
中图分类号:
R318 [生物医学工程];
学科分类号:
0831 ;
摘要:
We propose an unsupervised compressed sensing (CS)-based framework to compress, recover, and cluster neural action potentials. This framework can be easily integrated into high-density multi-electrode neural recording VLSI systems. Embedding spectral clustering and group structures in dictionary learning, we extend the proposed framework to unsupervised spike sorting without prior label information. Additionally, we incorporate group sparsity concepts in the dictionary learning to enable the framework for multi-channel neural recordings, as in tetrodes. To further improve spike sorting success rates in the CS framework, we embed template matching in sparse coding to jointly predict clusters of spikes. Our experimental results demonstrate that the proposed CS-based framework can achieve a high compression ratio (8: 1 to 20: 1), with a high quality reconstruction performance (>8 dB) and a high spike sorting accuracy (>90%).
引用
收藏
页码:1121 / 1130
页数:10
相关论文