An Unsupervised Compressed Sensing Algorithm for Multi-Channel Neural Recording and Spike Sorting

被引:14
作者
Xiong, Tao [1 ]
Zhang, Jie [2 ]
Martinez-Rubio, Clarissa [3 ]
Thakur, Chetan S. [4 ]
Eskandar, Emad N. [5 ,6 ]
Chin, Sang Peter [1 ,2 ,7 ]
Etienne-Cummings, Ralph [1 ]
Tran, Trac D. [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[2] MIT, Dept Brain & Cognit Sci, E25-618, Cambridge, MA 02139 USA
[3] Natl Parkinson Fdn, Miami, FL 33131 USA
[4] Indian Inst Sci, Dept Elect Syst Engn, Bengaluru 560012, India
[5] Harvard Med Sch, Boston, MA 02115 USA
[6] Massachusetts Gen Hosp, Dept Neurosurg, Boston, MA 02114 USA
[7] Boston Univ, Dept Comp Sci, 111 Cummington St, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
Compressed sensing; unsupervised; dictionary learning; neural recording; spike sorting; multi-channel; DICTIONARY LEARNING ALGORITHM; SPARSE REPRESENTATION; STRIATE CORTEX; SYSTEM;
D O I
10.1109/TNSRE.2018.2830354
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We propose an unsupervised compressed sensing (CS)-based framework to compress, recover, and cluster neural action potentials. This framework can be easily integrated into high-density multi-electrode neural recording VLSI systems. Embedding spectral clustering and group structures in dictionary learning, we extend the proposed framework to unsupervised spike sorting without prior label information. Additionally, we incorporate group sparsity concepts in the dictionary learning to enable the framework for multi-channel neural recordings, as in tetrodes. To further improve spike sorting success rates in the CS framework, we embed template matching in sparse coding to jointly predict clusters of spikes. Our experimental results demonstrate that the proposed CS-based framework can achieve a high compression ratio (8: 1 to 20: 1), with a high quality reconstruction performance (>8 dB) and a high spike sorting accuracy (>90%).
引用
收藏
页码:1121 / 1130
页数:10
相关论文
共 36 条
  • [1] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [2] Encoding of Both Positive and Negative Reward Prediction Errors by Neurons of the Primate Lateral Prefrontal Cortex and Caudate Nucleus
    Asaad, Wael F.
    Eskandar, Emad N.
    [J]. JOURNAL OF NEUROSCIENCE, 2011, 31 (49) : 17772 - 17787
  • [3] Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information
    Candès, EJ
    Romberg, J
    Tao, T
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) : 489 - 509
  • [4] Multichannel Electrophysiological Spike Sorting via Joint Dictionary Learning and Mixture Modeling
    Carlson, David E.
    Vogelstein, Joshua T.
    Wu, Qisong
    Lian, Wenzhao
    Zhou, Mingyuan
    Stoetzner, Colin R.
    Kipke, Daryl
    Weber, Douglas
    Dunson, David B.
    Carin, Lawrence
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2014, 61 (01) : 41 - 54
  • [5] Design and Analysis of a Hardware-Efficient Compressed Sensing Architecture for Data Compression in Wireless Sensors
    Chen, Fred
    Chandrakasan, Anantha P.
    Stojanovic, Vladimir M.
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2012, 47 (03) : 744 - 756
  • [6] Compressed Sensing System Considerations for ECG and EMG Wireless Biosensors
    Dixon, Anna M. R.
    Allstot, Emily G.
    Gangopadhyay, Daibashish
    Allstot, David J.
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2012, 6 (02) : 156 - 166
  • [7] Compressed sensing
    Donoho, DL
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) : 1289 - 1306
  • [8] Compressed Sensing Analog Front-End for Bio-Sensor Applications
    Gangopadhyay, Daibashish
    Allstot, Emily G.
    Dixon, Anna M. R.
    Natarajan, Karthik
    Gupta, Subhanshu
    Allstot, David J.
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (02) : 426 - 438
  • [9] Recent Advances in Neural Recording Microsystems
    Gosselin, Benoit
    [J]. SENSORS, 2011, 11 (05) : 4572 - 4597
  • [10] Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex
    Gray, CM
    Maldonado, PE
    Wilson, M
    McNaughton, B
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 1995, 63 (1-2) : 43 - 54