The Technique of Thyroid Cartilage Scaffold Support Formation for Extrusion-Based Bioprinting

被引:11
作者
Arguchinskaya, N., V [1 ]
Beketov, E. E. [1 ]
Kisel, A. A. [1 ]
Isaeva, E., V [1 ]
Osidak, E. O. [2 ]
Domogatsky, S. P. [2 ,3 ]
Mikhailovsky, N., V [1 ]
Sevryukov, F. E. [1 ]
Silantyeva, N. K. [1 ]
Agababyan, T. A. [1 ]
Ivanov, S. A. [1 ]
Shegay, P., V [4 ]
Kaprin, A. D. [4 ]
机构
[1] Minist Hlth Russian Federat, A Tsyb MRRC Branch, Natl Med Res Radiol Ctr, Obninsk, Russia
[2] Imtek Ltd, Moscow, Russia
[3] Minist Hlth Russian Federat, Russian Cardiol Res & Prod Ctr, Fed State Budgetary Inst, Moscow, Russia
[4] Minist Hlth Russian Federat, Natl Med Res Radiol Ctr, Obninsk, Russia
关键词
Computer-aided design/Computer-aided manufacturing; 3D-bioprinting; Cartilage; Collagen; Gelatin; TISSUE-ENGINEERED TRACHEA; VASCULAR CHANNELS; COLLAGEN; FABRICATION; CONSTRUCTS; NETWORKS; CULTURE; HYBRID; BIOINK;
D O I
10.18063/ijb.v7i2.348
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
During biofabrication, a tissue scaffold may require temporary support. The aim of this study was to develop an approach of human thyroid cartilage scaffold temporal support formation. The scaffold 3D-model was based on DICOM images. XY plane projections were used to form scaffold supporting part. To verify the technique, collagen hydrogel was chosen as the main scaffold component. Gelatin was applied for the supporting part. To test the applicability of the approach, a model of thyroid cartilage scaffold with the support was printed. The scaffold corresponded to a given model, although some discrepancy in geometry was observed during verification by computed tomography.
引用
收藏
页码:104 / 113
页数:10
相关论文
共 45 条
[1]   Chondrocytes and stem cells in 3D-bioprinted structures create human cartilage in vivo [J].
Apelgren, Peter ;
Amoroso, Matteo ;
Lindahl, Anders ;
Brantsing, Camilla ;
Rotter, Nicole ;
Gatenholm, Paul ;
Kolby, Lars .
PLOS ONE, 2017, 12 (12)
[2]   Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs [J].
Bertassoni, Luiz E. ;
Cecconi, Martina ;
Manoharan, Vijayan ;
Nikkhah, Mehdi ;
Hjortnaes, Jesper ;
Cristino, Ana Luiza ;
Barabaschi, Giada ;
Demarchi, Danilo ;
Dokmeci, Mehmet R. ;
Yang, Yunzhi ;
Khademhosseini, Ali .
LAB ON A CHIP, 2014, 14 (13) :2202-2211
[3]   Writing in the granular gel medium [J].
Bhattacharjee, Tapomoy ;
Zehnder, Steven M. ;
Rowe, Kyle G. ;
Jain, Suhani ;
Nixon, Ryan M. ;
Sawyer, W. Gregory ;
Angelini, Thomas E. .
SCIENCE ADVANCES, 2015, 1 (08)
[4]   Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH [J].
Diamantides, Nicole ;
Wang, Louis ;
Pruiksma, Tylar ;
Siemiatkoski, Joseph ;
Dugopolski, Caroline ;
Shortkroff, Sonya ;
Kennedy, Stephen ;
Bonassar, Lawrence J. .
BIOFABRICATION, 2017, 9 (03)
[5]   Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives [J].
Dong, Chanjuan ;
Lv, Yonggang .
POLYMERS, 2016, 8 (02)
[6]  
Doyle AD, 2016, Curr Protoc Cell Biol, V72, DOI [10.1002/cpcb.9, DOI 10.1002/CPCB.9]
[7]  
Drzewiecki KE, 2017, TECHNOLOGY, V5, P185, DOI 10.1142/S2339547817500091
[8]   Matrix elasticity directs stem cell lineage specification [J].
Engler, Adam J. ;
Sen, Shamik ;
Sweeney, H. Lee ;
Discher, Dennis E. .
CELL, 2006, 126 (04) :677-689
[9]  
Fitzsimmons Ross E. B., 2018, Bioprinting, V9, P7, DOI 10.1016/j.bprint.2018.02.001
[10]   Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair [J].
Gao, Manchen ;
Zhang, Hengyi ;
Dong, Wei ;
Bai, Jie ;
Gao, Botao ;
Xia, Dekai ;
Feng, Bei ;
Chen, Maolin ;
He, Xiaomin ;
Yin, Meng ;
Xu, Zhiwei ;
Witman, Nevin ;
Fu, Wei ;
Zheng, Jinghao .
SCIENTIFIC REPORTS, 2017, 7