MODEL THEORY OF GALOIS ACTIONS OF TORSION ABELIAN GROUPS

被引:0
作者
Beyarslan, Ozlem [1 ]
Kowalski, Piotr [2 ]
机构
[1] Bogazici Univ, Matemat Bolumu, TR-34342 Istanbul, Turkey
[2] Uniwersytet Wroclawski, Inst Matemat, Pl Grunwaldzki 2, PL-50384 Wroclaw, Poland
关键词
difference field; model companion; Prufer group; Frattini cover; FIELDS; PAC;
D O I
10.1017/S1474748022000305
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the theory of Galois actions of a torsion Abelian group A is companionable if and only if, for each prime p, the p-primary part of A is either finite or it coincides with the Prufer p-group. We also provide a model-theoretic description of the model companions we obtain.
引用
收藏
页码:2943 / 2985
页数:43
相关论文
共 24 条
[1]   Model theory of fields with virtually free group actions [J].
Beyarslan, Ozlem ;
Kowalski, Piotr .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 118 (02) :221-256
[2]  
Bourbaki N., 1990, ALGEBRA, DOI DOI 10.1007/978-3-642-61698-3
[3]   Model theory of difference fields [J].
Chatzidakis, Z ;
Hrushovski, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 351 (08) :2997-3071
[4]   Model theory of difference fields, II: Periodic ideals and the trichotomy in all characteristics [J].
Chatzidakis, Z ;
Hrushovski, E ;
Peterzil, Y .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 :257-311
[5]  
Fried Michael D., 2008, ERGEBNISSE MATH IHRE, V11
[6]  
Hodges W., 1997, A shorter model theory
[7]   Existentially closed fields with G-derivations [J].
Hoffmann, Daniel ;
Kowalski, Piotr .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2016, 93 :590-618
[8]   Existentially closed fields with finite group actions [J].
Hoffmann, Daniel M. ;
Kowalski, Piotr .
JOURNAL OF MATHEMATICAL LOGIC, 2018, 18 (01)
[9]   On Galois groups and PAC substructures [J].
Hoffmann, Daniel Max .
FUNDAMENTA MATHEMATICAE, 2020, 250 (02) :151-177
[10]   Model theoretic dynamics in Galois fashion [J].
Hoffmann, Daniel Max .
ANNALS OF PURE AND APPLIED LOGIC, 2019, 170 (07) :755-804