Data-driven models in human neuroscience and neuroengineering

被引:23
作者
Brunton, Bingni W. [1 ,2 ,3 ]
Beyeler, Michael [2 ,3 ,4 ]
机构
[1] Univ Washington, Dept Biol, Seattle, WA 98195 USA
[2] Univ Washington, Inst Neuroengn, Seattle, WA 98195 USA
[3] Univ Washington, eSci Inst, Seattle, WA 98195 USA
[4] Univ Washington, Dept Psychol, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
REDUCTION;
D O I
10.1016/j.conb.2019.06.008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Discoveries in modern human neuroscience are increasingly driven by quantitative understanding of complex data. Data-intensive approaches to modeling have promise to dramatically advance our understanding of the brain and critically enable neuroengineering capabilities. In this review, we provide an accessible primer to modern modeling approaches and highlight recent data-driven discoveries in the domains of neuroimaging, single-neuron and neuronal population responses, and device neuroengineering. Further, we suggest that meaningful progress requires the community to tackle open challenges in the realms of model interpretability and generalizability, training pipelines of data-fluent human neuroscientists, and integrated consideration of data ethics.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 78 条
[61]  
Sokolov AA, 2018, P NATL ACED SCI, V115
[62]   Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-Null Neural State Space Dimensions [J].
Stavisky, Sergey D. ;
Kao, Jonathan C. ;
Ryu, Stephen I. ;
Shenoy, Krishna V. .
NEURON, 2017, 95 (01) :195-+
[63]   Brain-Behavior Participant Similarity Networks Among Youth and Emerging Adults with Schizophrenia Spectrum, Autism Spectrum, or Bipolar Disorder and Matched Controls [J].
Stefanik, Laura ;
Erdman, Lauren ;
Ameis, Stephanie H. ;
Foussias, George ;
Mulsant, Benoit H. ;
Behdinan, Tina ;
Goldenberg, Anna ;
O'Donnell, Lauren J. ;
Voineskos, Aristotle N. .
NEUROPSYCHOPHARMACOLOGY, 2018, 43 (05) :1180-1188
[64]   Multimodal mapping of the brain's functional connectivity and the adult outcome of attention deficit hyperactivity disorder [J].
Sudre, Gustavo ;
Szekely, Eszter ;
Sharp, Wendy ;
Kasparek, Steven ;
Shaw, Philip .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (44) :11787-11792
[65]   Making brain-machine interfaces robust to future neural variability [J].
Sussillo, David ;
Stavisky, Sergey D. ;
Kao, Jonathan C. ;
Ryu, Stephen I. ;
Shenoy, Krishna V. .
NATURE COMMUNICATIONS, 2016, 7
[66]  
Svanera M, 2017, ARXIV170102133CSQBBI
[67]   Uncovering hidden brain state dynamics that regulate performance and decision-making during cognition [J].
Taghia, Jalil ;
Cai, Weidong ;
Ryali, Srikanth ;
Kochalka, John ;
Nicholas, Jonathan ;
Chen, Tianwen ;
Menon, Vinod .
NATURE COMMUNICATIONS, 2018, 9
[68]   Identification of depression subtypes and relevant brain regions using a data-driven approach [J].
Tokuda, Tomoki ;
Yoshimoto, Junichiro ;
Shimizu, Yu ;
Okada, Go ;
Takamura, Masahiro ;
Okamoto, Yasumasa ;
Yamawaki, Shigeto ;
Doya, Kenji .
SCIENTIFIC REPORTS, 2018, 8
[69]   Generic dynamic causal modelling: An illustrative application to Parkinson's disease [J].
van Wijk, Bernadette C. M. ;
Cagnan, Hayriye ;
Litvak, Vladimir ;
Kuehn, Andrea A. ;
Friston, Karl J. .
NEUROIMAGE, 2018, 181 :818-830
[70]  
Volker M, 2018, ARXIV180501667