Data-driven models in human neuroscience and neuroengineering

被引:20
|
作者
Brunton, Bingni W. [1 ,2 ,3 ]
Beyeler, Michael [2 ,3 ,4 ]
机构
[1] Univ Washington, Dept Biol, Seattle, WA 98195 USA
[2] Univ Washington, Inst Neuroengn, Seattle, WA 98195 USA
[3] Univ Washington, eSci Inst, Seattle, WA 98195 USA
[4] Univ Washington, Dept Psychol, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
REDUCTION;
D O I
10.1016/j.conb.2019.06.008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Discoveries in modern human neuroscience are increasingly driven by quantitative understanding of complex data. Data-intensive approaches to modeling have promise to dramatically advance our understanding of the brain and critically enable neuroengineering capabilities. In this review, we provide an accessible primer to modern modeling approaches and highlight recent data-driven discoveries in the domains of neuroimaging, single-neuron and neuronal population responses, and device neuroengineering. Further, we suggest that meaningful progress requires the community to tackle open challenges in the realms of model interpretability and generalizability, training pipelines of data-fluent human neuroscientists, and integrated consideration of data ethics.
引用
收藏
页码:21 / 29
页数:9
相关论文
共 50 条
  • [1] Data-Driven Computational Neuroscience: Machine Learning and Statistical Models
    Kreinovich, Vladik
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (01) : 2513 - 2514
  • [2] Data-Driven Network Neuroscience: On Data Collection and Benchmark
    Xu, Jiaxing
    Yang, Yunhan
    Huang, David Tse Jung
    Gururajapathy, Sophi Shilpa
    Ke, Yiping
    Qiao, Miao
    Wang, Alan
    Kumar, Haribalan
    McGeown, Josh
    Kwon, Eryn
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [3] Descriptive multiscale modeling in data-driven neuroscience
    Haueis, Philipp
    SYNTHESE, 2022, 200 (02)
  • [4] Descriptive multiscale modeling in data-driven neuroscience
    Philipp Haueis
    Synthese, 2022, 200
  • [5] NeuroML-DB: Sharing and characterizing data-driven neuroscience models described in NeuroML
    Birgiolas, Justas
    Haynes, Vergil
    Gleeson, Padraig
    Gerkin, Richard C.
    Dietrich, Suzanne W.
    Crook, Sharon
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (03)
  • [6] Data-driven Koopman operator approach for computational neuroscience
    Marrouch, Natasza
    Slawinska, Joanna
    Giannakis, Dimitrios
    Read, Heather L.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2020, 88 (11-12) : 1155 - 1173
  • [7] Data-driven Stellar Models
    Green, Gregory M.
    Rix, Hans-Walter
    Tschesche, Leon
    Finkbeiner, Douglas
    Zucker, Catherine
    Schlafly, Edward F.
    Rybizki, Jan
    Fouesneau, Morgan
    Andrae, Rene
    Speagle, Joshua
    ASTROPHYSICAL JOURNAL, 2021, 907 (01):
  • [8] Data-driven Koopman operator approach for computational neuroscience
    Natasza Marrouch
    Joanna Slawinska
    Dimitrios Giannakis
    Heather L. Read
    Annals of Mathematics and Artificial Intelligence, 2020, 88 : 1155 - 1173
  • [9] Data-driven uncertainty quantification in computational human head models
    Upadhyay, Kshitiz
    Giovanis, Dimitris G.
    Alshareef, Ahmed
    Knutsen, Andrew K.
    Johnson, Curtis L.
    Carass, Aaron
    Bayly, Philip, V
    Shields, Michael D.
    Ramesh, K. T.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 398
  • [10] Rethinking ethics in interdisciplinary and big data-driven neuroscience projects
    Stahl, Bernd Carsten
    Ogoh, George
    Schumann, Gunter
    Walter, Henrik
    NATURE MENTAL HEALTH, 2024, 2 (10): : 1128 - 1130