TAIM: Tool for Analyzing Root Images to Calculate the Infection Rate of Arbuscular Mycorrhizal Fungi

被引:3
作者
Muta, Kaoru [1 ]
Takata, Shiho [2 ]
Utsumi, Yuzuko [1 ]
Matsumura, Atsushi [2 ]
Iwamura, Masakazu [1 ]
Kise, Koichi [1 ]
机构
[1] Osaka Prefecture Univ, Grad Sch Engn, Osaka, Japan
[2] Osaka Prefecture Univ, Grad Sch Life & Environm Sci, Osaka, Japan
关键词
arbuscular mycorrhizal fungi; magnified intersections method; computer vision; pattern recognition; deep convolutional neural networks; system development; MICROSCOPY; TRACKING; CLASSIFICATION; SEGMENTATION; COLONIZATION; DIVERSITY; GRAINS; PLANT;
D O I
10.3389/fpls.2022.881382
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Arbuscular mycorrhizal fungi (AMF) infect plant roots and are hypothesized to improve plant growth. Recently, AMF is now available for axenic culture. Therefore, AMF is expected to be used as a microbial fertilizer. To evaluate the usefulness of AMF as a microbial fertilizer, we need to investigate the relationship between the degree of root colonization of AMF and plant growth. The method popularly used for calculation of the degree of root colonization, termed the magnified intersections method, is performed manually and is too labor-intensive to enable an extensive survey to be undertaken. Therefore, we automated the magnified intersections method by developing an application named "Tool for Analyzing root images to calculate the Infection rate of arbuscular Mycorrhizal fungi: TAIM. " TAIM is a web-based application that calculates the degree of AMF colonization from images using automated computer vision and pattern recognition techniques. Experimental results showed that TAIM correctly detected sampling areas for calculation of the degree of infection and classified the sampling areas with 87.4% accuracy. TAIM is publicly accessible at .
引用
收藏
页数:11
相关论文
共 52 条
[1]   Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images [J].
Al-Kofahi, Yousef ;
Lassoued, Wiem ;
Lee, William ;
Roysam, Badrinath .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (04) :841-852
[2]   Detection and Classification of Pollen Grain Microscope Images [J].
Battiato, Sebastiano ;
Ortis, Alessandro ;
Trenta, Francesca ;
Ascari, Lorenzo ;
Politi, Mara ;
Siniscalco, Consolata .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :4220-4227
[3]   Automated recognition by multiple convolutional neural networks of modern, fossil, intact and damaged pollen grains [J].
Bourel, Benjamin ;
Marchant, Ross ;
de Garidel-Thoron, Thibault ;
Tetard, Martin ;
Barboni, Doris ;
Gally, Yves ;
Beaufort, Luc .
COMPUTERS & GEOSCIENCES, 2020, 140
[4]   An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy [J].
Buggenthin, Felix ;
Marr, Carsten ;
Schwarzfischer, Michael ;
Hoppe, Philipp S. ;
Hilsenbeck, Oliver ;
Schroeder, Timm ;
Theis, Fabian J. .
BMC BIOINFORMATICS, 2013, 14
[5]   Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy [J].
Chen, XW ;
Zhou, XB ;
Wong, STC .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (04) :762-766
[6]   Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes [J].
Debeir, O ;
Van Ham, P ;
Kiss, R ;
Decaestecker, C .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (06) :697-711
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]   Detection of herpesvirus capsids in transmission electron microscopy images using transfer learning [J].
Devan, K. Shaga ;
Walther, P. ;
von Einem, J. ;
Ropinski, T. ;
Kestler, H. A. ;
Read, C. .
HISTOCHEMISTRY AND CELL BIOLOGY, 2019, 151 (02) :101-114
[9]   Advanced Level-Set-Based Cell Tracking in Time-Lapse Fluorescence Microscopy [J].
Dzyubachyk, Oleh ;
van Cappellen, Wiggert A. ;
Essers, Jeroen ;
Niessen, Wiro J. ;
Meijering, Erik .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (03) :852-867
[10]   Deep learning-based quantification of arbuscular mycorrhizal fungi in plant roots [J].
Evangelisti, Edouard ;
Turner, Carl ;
McDowell, Alice ;
Shenhav, Liron ;
Yunusov, Temur ;
Gavrin, Aleksandr ;
Servante, Emily K. ;
Quan, Clement ;
Schornack, Sebastian .
NEW PHYTOLOGIST, 2021, 232 (05) :2207-2219