Quantum Bousso bound

被引:39
作者
Strominger, A [1 ]
Thompson, D [1 ]
机构
[1] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
来源
PHYSICAL REVIEW D | 2004年 / 70卷 / 04期
关键词
D O I
10.1103/PhysRevD.70.044007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Bousso bound requires that one-quarter of the area of a closed codimension-2 spacelike surface exceeds the entropy flux across a certain lightsheet terminating on the surface. The bound can be violated by quantum effects such as Hawking radiation. It is proposed that at the quantum level the bound be modified by adding to the area the quantum entanglement entropy across the surface. The validity of this quantum Bousso bound is proven in a two-dimensional large N dilaton gravity theory.
引用
收藏
页数:8
相关论文
共 50 条
[31]   An upper bound on quantum capacity of unital quantum channels [J].
Anshu, Anurag .
2017 IEEE INFORMATION THEORY WORKSHOP (ITW), 2017, :214-218
[32]   Bound polarons in quantum dot quantum well structures [J].
Xing, Yan ;
Wang, Zhi-Ping ;
Wang, Xu .
CHINESE PHYSICS B, 2009, 18 (05) :1935-1941
[33]   Bound polarons in quantum dot quantum well structures [J].
邢雁 ;
王志平 ;
王旭 .
Chinese Physics B, 2009, (05) :1935-1941
[34]   Quantum cloning bound and application to quantum key distribution [J].
Woodhead, Erik .
PHYSICAL REVIEW A, 2013, 88 (01)
[35]   Bound states in continuum: Quantum dots in a quantum well [J].
Prodanovic, Nikola ;
Milanovic, Vitomir ;
Ikonic, Zoran ;
Indjin, Dragan ;
Harrison, Paul .
PHYSICS LETTERS A, 2013, 377 (34-36) :2177-2181
[36]   BOUND AND VIRTUAL BOUND-STATES IN SEMICONDUCTOR QUANTUM WELLS [J].
BASTARD, G ;
ZIEMELIS, UO ;
DELALANDE, C ;
VOOS, M ;
GOSSARD, AC ;
WIEGMANN, W .
SOLID STATE COMMUNICATIONS, 1984, 49 (07) :671-674
[37]   Applications of an exact counting formula in the Bousso-Polchinski landscape [J].
Asensio, Cesar ;
Segui, Antonio .
PHYSICAL REVIEW D, 2010, 82 (12)
[38]   A lower bound method for quantum circuits [J].
Bera, Debajyoti .
INFORMATION PROCESSING LETTERS, 2011, 111 (15) :723-726
[39]   Intermittent Lower Bound on Quantum Diffusion [J].
Italo Guarneri ;
Hermann Schulz-Baldes .
Letters in Mathematical Physics, 1999, 49 :317-324
[40]   Spectra of nonlocally bound quantum systems [J].
Sowa, A. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2011, 18 (02) :227-241