Genomic prediction of grain yield in commercial Finnish oat (Avena sativa) and barley (Hordeum vulgare) breeding programmes

被引:15
作者
Haikka, Hanna [1 ,2 ]
Knurr, Timo [2 ,3 ]
Manninen, Outi [2 ]
Pietila, Leena [2 ]
Isolahti, Mika [2 ]
Teperi, Esa [2 ]
Mantysaari, Esa A. [3 ]
Stranden, Ismo [3 ]
机构
[1] Univ Helsinki, Helsinki, Finland
[2] Boreal Plant Breeding Ltd, Jokioinen, Finland
[3] Luke, Nat Resources Inst Finland, Jokioinen, Finland
关键词
barley; commercial breeding programme; genomic prediction; grain yield; multitrait model; oat; MULTIPLE-TRAIT; LINKAGE DISEQUILIBRIUM; POPULATION-STRUCTURE; QUANTITATIVE TRAITS; SELECTION; ACCURACY; PERFORMANCE; PEDIGREE; INDEXES; PROTEIN;
D O I
10.1111/pbr.12807
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Genomic selection has been adopted in many plant breeding programmes. In this paper, we cover some aspects of information necessary before starting genomic selection. Spring oat and barley breeding data sets from commercial breeding programmes were studied using single, multitrait and trait-assisted models for predicting grain yield. Heritabilities were higher when estimated using multitrait models compared to single-trait models. However, no corresponding increase in prediction accuracy was observed in a cross-validation scenario. On the other hand, forward prediction showed a slight, but not significant, increase in accuracy of genomic estimated breeding values for breeding cohorts when a multitrait model was applied. When a correlated trait was used in a trait-assisted model, on average the accuracies increased by 9%-14% for oat and by 11%-28% for barley compared with a single-trait model. Overall, accuracies in forward validation varied between breeding cohorts and years for grain yield. Forward prediction accuracies for multiple cohorts and multiple years' data are reported for oat for the first time.
引用
收藏
页码:550 / 561
页数:12
相关论文
共 49 条
[1]   When less can be better: How can we make genomic selection more cost-effective and accurate in barley? [J].
Abed, Amina ;
Perez-Rodriguez, Paulino ;
Crossa, Jos ;
Belzile, Francois .
THEORETICAL AND APPLIED GENETICS, 2018, 131 (09) :1873-1890
[2]  
[Anonymous], 2016, Microsoft Excel
[3]  
[Anonymous], 2017, R LANG ENV STAT COMP
[4]   Accuracy and Training Population Design for Genomic Selection on Quantitative Traits in Elite North American Oats [J].
Asoro, Franco G. ;
Newell, Mark A. ;
Beavis, William D. ;
Scott, M. Paul ;
Jannink, Jean-Luc .
PLANT GENOME, 2011, 4 (02) :132-144
[5]   Model training across multiple breeding cycles significantly improves genomic prediction accuracy in rye (Secale cereale L.) [J].
Auinger, Hans-Jurgen ;
Schoenleben, Manfred ;
Lehermeier, Christina ;
Schmidt, Malthe ;
Korzun, Viktor ;
Geiger, Hartwig H. ;
Piepho, Hans-Peter ;
Gordillo, Andres ;
Wilde, Peer ;
Bauer, Eva ;
Schoen, Chris-Carolin .
THEORETICAL AND APPLIED GENETICS, 2016, 129 (11) :2043-2053
[6]   Association mapping and genomic prediction for resistance to sudden death syndrome in early maturing soybean germplasm [J].
Bao, Yong ;
Kurle, James E. ;
Anderson, Grace ;
Young, Nevin D. .
MOLECULAR BREEDING, 2015, 35 (06)
[7]   Bandwagons I, too, have known [J].
Bernardo, Rex .
THEORETICAL AND APPLIED GENETICS, 2016, 129 (12) :2323-2332
[8]   Genetic Gains in Grain Yield Through Genomic Selection in Eight Bi-parental Maize Populations under Drought Stress [J].
Beyene, Yoseph ;
Semagn, Kassa ;
Mugo, Stephen ;
Tarekegne, Amsal ;
Babu, Raman ;
Meisel, Barbara ;
Sehabiague, Pierre ;
Makumbi, Dan ;
Magorokosho, Cosmos ;
Oikeh, Sylvester ;
Gakunga, John ;
Vargas, Mateo ;
Olsen, Michael ;
Prasanna, Boddupalli M. ;
Banziger, Marianne ;
Crossa, Jose .
CROP SCIENCE, 2015, 55 (01) :154-163
[9]   Genomic Selection in Plant Breeding: Methods, Models, and Perspectives [J].
Crossa, Jose ;
Perez-Rodriguez, Paulino ;
Cuevas, Jaime ;
Montesinos-Lopez, Osval ;
Jarquin, Diego ;
de los Campos, Gustavo ;
Burgueno, Juan ;
Gonzalez-Camacho, Juan M. ;
Perez-Elizalde, Sergio ;
Beyene, Yoseph ;
Dreisigacker, Susanne ;
Singh, Ravi ;
Zhang, Xuecai ;
Gowda, Manje ;
Roorkiwal, Manish ;
Rutkoski, Jessica ;
Varshney, Rajeev K. .
TRENDS IN PLANT SCIENCE, 2017, 22 (11) :961-975
[10]   Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers [J].
Crossa, Jose ;
de los Campos, Gustavo ;
Perez, Paulino ;
Gianola, Daniel ;
Burgueno, Juan ;
Luis Araus, Jose ;
Makumbi, Dan ;
Singh, Ravi P. ;
Dreisigacker, Susanne ;
Yan, Jianbing ;
Arief, Vivi ;
Banziger, Marianne ;
Braun, Hans-Joachim .
GENETICS, 2010, 186 (02) :713-U406