Monotonicity of ratio between the generalized logarithmic means

被引:0
作者
Qi, Feng [1 ]
Chen, Shou-Xin
Chen, Chao-Ping
机构
[1] Henan Univ, Coll Math & Informat Sci, Kaifeng City 475001, Henan, Peoples R China
[2] Henan Polytech Univ, Res Inst Math Inequal Theory, Jiaozuo 454010, Peoples R China
[3] Henan Polytech Univ, Sch Math & Informat, Jiaozuo City 454010, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2007年 / 10卷 / 03期
关键词
monotonicity; inequality; ratio; generalized logarithmic mean; extended logarithmic mean; identric mean; exponential mean;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let c > b > a > 0 be real numbers. Then the function f (r) = L-r(a,b)/L-r(a,c) is strictly decreasing on (-infinity, infinity), where L-r (a, b) denotes the generalized (extended) logarithmic mean of two positive numbers a and b.
引用
收藏
页码:559 / 564
页数:6
相关论文
共 52 条
[1]   ON AN INEQUALITY OF MINC,H. AND SATHRE,L [J].
ALZER, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 179 (02) :396-402
[2]  
Bullen, 1998, PITMAN MONOGRAPHS SU, V97
[3]   On a generalization of Martins' inequality [J].
Chan, TH ;
Gao, P ;
Qi, F .
MONATSHEFTE FUR MATHEMATIK, 2003, 138 (03) :179-187
[4]  
CHAN TH, 2001, RGMIA RES REP COLL, V4, P93
[5]  
Chen CP, 2003, MATH INEQUAL APPL, V6, P229
[6]  
CHEN CP, 2002, RGMIA RES REP COLL, V5
[7]   On Alzer's inequality [J].
Elezovic, N ;
Pecaric, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 223 (01) :366-369
[8]  
Guo B.-N., 2003, TAMKANG J MATH, V34, P261
[9]  
Guo BN, 2006, MATH INEQUAL APPL, V9, P1
[10]  
GUO BN, 2001, RGMIA RES REP COLL, V4, P55