Twistor Spinors and Quasi-twistor Spinors

被引:0
作者
Chen, Yongfa [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Dirac operator; Twistor spinor; Scalar curvature; DIRAC OPERATOR; KAHLER-MANIFOLDS; KILLING SPINORS; 1ST EIGENVALUE; BOUNDS;
D O I
10.1007/s11401-016-0961-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The author studies the properties and applications of quasi-Killing spinors and quasi-twistor spinors and obtains some vanishing theorems. In particular, the author classifies all the types of quasi-twistor spinors on closed Riemannian spin manifolds. As a consequence, it is known that on a locally decomposable closed spin manifold with nonzero Ricci curvature, the space of twistor spinors is trivial. Some integrability condition for twistor spinors is also obtained.
引用
收藏
页码:451 / 464
页数:14
相关论文
共 18 条
[11]   PROPERTIES OF KAHLERIAN TWISTOR-SPINORS AND VANISHING THEOREMS [J].
KIRCHBERG, KD .
MATHEMATISCHE ANNALEN, 1992, 293 (02) :349-369
[12]   Eigenvalue estimates for the Dirac operator on quaternionic Kahler manifolds [J].
Kramer, W ;
Semmelmann, U ;
Weingart, G .
MATHEMATISCHE ZEITSCHRIFT, 1999, 230 (04) :727-751
[13]   Asymptotically euclidean manifolds and twister spinors [J].
Kuhnel, W ;
Rademacher, HB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 196 (01) :67-76
[14]  
Lawson H.B., 1989, Princeton Math. Ser., V38, pxii+427
[15]   SPIN MANIFOLDS, KILLING SPINORS AND UNIVERSALITY OF THE HIJAZI INEQUALITY [J].
LICHNEROWICZ, A .
LETTERS IN MATHEMATICAL PHYSICS, 1987, 13 (04) :331-344
[16]  
Lichnerowicz A, 1988, J GEOM PHYS, V5, P2
[17]   Eigenvalue estimates for the Dirac operator and harmonic 1-forms of constant length [J].
Moroianu, A ;
Ornea, L .
COMPTES RENDUS MATHEMATIQUE, 2004, 338 (07) :561-564
[18]  
Yano K., 1984, STRUCTURES MANIFOLDS, V3