ERDOS SEMI-GROUPS, ARITHMETIC PROGRESSIONS, AND SZEMEREDI'S THEOREM

被引:0
作者
Yu, Han [1 ]
机构
[1] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
关键词
Hausdorff dimension; sum sets; Szemeredi theorem; PROOF;
D O I
10.14321/realanalexch.41.1.0101
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and study a certain type of sub semi-group of R/Z which turns out to be closely related to Szemeredi's theorem on arithmetic progressions.
引用
收藏
页码:101 / 118
页数:18
相关论文
共 15 条
[1]  
Bishop C.J., 2016, Cambridge Studies in Advanced Mathematics
[2]  
ERDOS P, 1966, J REINE ANGEW MATH, V221, P203
[3]  
Falconer K., 2015, FRACTAL GEOMETRY STO, VV
[4]  
Falconer K., 2004, FRACTAL GEOMETRY MAT
[5]  
Fraser J., 2018, DIMENSION GROWTH ITE
[6]   Dimensions of Sets Which Uniformly Avoid Arithmetic Progressions [J].
Fraser, Jonathan M. ;
Saito, Kota ;
Yu, Han .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (14) :4419-4430
[7]   Arithmetic patches, weak tangents, and dimension [J].
Fraser, Jonathan M. ;
Yu, Han .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (01) :85-95
[8]   THE ERGODIC THEORETICAL PROOF OF SZEMEREDIS THEOREM [J].
FURSTENBERG, H ;
KATZNELSON, Y ;
ORNSTEIN, D .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 7 (03) :527-552
[9]   A new proof of Szemeredi's theorem [J].
Gowers, WT .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (03) :465-588