Temporal, probabilistic mapping of ash clouds using wind field stochastic variability and uncertain eruption source parameters: Example of the 14 April 2010 Eyjafjallajokull eruption

被引:17
作者
Stefanescu, E. R. [1 ]
Patra, A. K. [1 ]
Bursik, M. I. [2 ]
Madankan, R. [1 ]
Pouget, S. [2 ]
Jones, M. [3 ]
Singla, P. [1 ]
Singh, T. [1 ]
Pitman, E. B. [4 ]
Pavolonis, M. [5 ]
Morton, D. [6 ]
Webley, P. [6 ]
Dehn, J. [6 ]
机构
[1] SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
[2] SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA
[3] SUNY Buffalo, Ctr Computat Res, Buffalo, NY 14260 USA
[4] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
[5] NOAA NESDIS, Ctr Satellite Applicat & Res, Madison, WI USA
[6] Univ Alaska, Inst Geophys, Fairbanks, AK USA
来源
JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS | 2014年 / 6卷 / 04期
基金
美国国家科学基金会;
关键词
TROPICAL CYCLONE ACTIVITY; INTERANNUAL VARIABILITY; CIRCULATION; CLIMATE; MODEL; INTEGRATION; SIMULATION; FREQUENCY; GCM;
D O I
10.1002/2014MS000332
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Uncertainty in predictions from a model of volcanic ash transport in the atmosphere arises from uncertainty in both eruption source parameters and the model wind field. In a previous contribution, we analyzed the probability of ash cloud presence using weighted samples of volcanic ash transport and dispersal model runs and a reanalysis wind field to propagate uncertainty in eruption source parameters alone. In this contribution, the probabilistic modeling is extended by using ensemble forecast wind fields as well as uncertain source parameters. The impact on ash transport of variability in wind fields due to unresolved scales of motion as well as model physics uncertainty is also explored. We have therefore generated a weighted, probabilistic forecast of volcanic ash transport with only a priori information, exploring uncertainty in both the wind field and the volcanic source.
引用
收藏
页码:1173 / 1184
页数:12
相关论文
共 60 条
  • [51] 2
  • [52] Vitart F, 1997, J CLIMATE, V10, P745, DOI 10.1175/1520-0442(1997)010<0745:SOIVOT>2.0.CO
  • [53] 2
  • [54] Vitart F., 1998, THESIS PRINCETON U P
  • [55] Walsh K, 1997, MON WEATHER REV, V125, P1767, DOI 10.1175/1520-0493(1997)125<1767:ODOTCI>2.0.CO
  • [56] 2
  • [57] The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations
    Walters, D. N.
    Best, M. J.
    Bushell, A. C.
    Copsey, D.
    Edwards, J. M.
    Falloon, P. D.
    Harris, C. M.
    Lock, A. P.
    Manners, J. C.
    Morcrette, C. J.
    Roberts, M. J.
    Stratton, R. A.
    Webster, S.
    Wilkinson, J. M.
    Willett, M. R.
    Boutle, I. A.
    Earnshaw, P. D.
    Hill, P. G.
    MacLachlan, C.
    Martin, G. M.
    Moufouma-Okia, W.
    Palmer, M. D.
    Petch, J. C.
    Rooney, G. G.
    Scaife, A. A.
    Williams, K. D.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (04) : 919 - 941
  • [58] The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1
    Wehner, Michael F.
    Reed, Kevin A.
    Li, Fuyu
    Prabhat
    Bacmeister, Julio
    Chen, Cheng-Ta
    Paciorek, Christopher
    Gleckler, Peter J.
    Sperber, Kenneth R.
    Collins, William D.
    Gettelman, Andrew
    Jablonowski, Christiane
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2014, 6 (04): : 980 - 997
  • [59] An Analysis of the Effect of Global Warming on the Intensity of Atlantic Hurricanes Using a GCM with Statistical Refinement
    Zhao, Ming
    Held, Isaac M.
    [J]. JOURNAL OF CLIMATE, 2010, 23 (23) : 6382 - 6393
  • [60] Simulations of Global Hurricane Climatology, Interannual Variability, and Response to Global Warming Using a 50-km Resolution GCM
    Zhao, Ming
    Held, Isaac M.
    Lin, Shian-Jiann
    Vecchi, Gabriel A.
    [J]. JOURNAL OF CLIMATE, 2009, 22 (24) : 6653 - 6678