Temporal, probabilistic mapping of ash clouds using wind field stochastic variability and uncertain eruption source parameters: Example of the 14 April 2010 Eyjafjallajokull eruption

被引:17
作者
Stefanescu, E. R. [1 ]
Patra, A. K. [1 ]
Bursik, M. I. [2 ]
Madankan, R. [1 ]
Pouget, S. [2 ]
Jones, M. [3 ]
Singla, P. [1 ]
Singh, T. [1 ]
Pitman, E. B. [4 ]
Pavolonis, M. [5 ]
Morton, D. [6 ]
Webley, P. [6 ]
Dehn, J. [6 ]
机构
[1] SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
[2] SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA
[3] SUNY Buffalo, Ctr Computat Res, Buffalo, NY 14260 USA
[4] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
[5] NOAA NESDIS, Ctr Satellite Applicat & Res, Madison, WI USA
[6] Univ Alaska, Inst Geophys, Fairbanks, AK USA
基金
美国国家科学基金会;
关键词
TROPICAL CYCLONE ACTIVITY; INTERANNUAL VARIABILITY; CIRCULATION; CLIMATE; MODEL; INTEGRATION; SIMULATION; FREQUENCY; GCM;
D O I
10.1002/2014MS000332
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Uncertainty in predictions from a model of volcanic ash transport in the atmosphere arises from uncertainty in both eruption source parameters and the model wind field. In a previous contribution, we analyzed the probability of ash cloud presence using weighted samples of volcanic ash transport and dispersal model runs and a reanalysis wind field to propagate uncertainty in eruption source parameters alone. In this contribution, the probabilistic modeling is extended by using ensemble forecast wind fields as well as uncertain source parameters. The impact on ash transport of variability in wind fields due to unresolved scales of motion as well as model physics uncertainty is also explored. We have therefore generated a weighted, probabilistic forecast of volcanic ash transport with only a priori information, exploring uncertainty in both the wind field and the volcanic source.
引用
收藏
页码:1173 / 1184
页数:12
相关论文
共 60 条
[11]   Experimental Dynamical Seasonal Forecasts of Tropical Cyclone Activity at IRI [J].
Camargo, Suzana J. ;
Barnston, Anthony G. .
WEATHER AND FORECASTING, 2009, 24 (02) :472-491
[12]   A QuikSCAT climatology of tropical cyclone size [J].
Chavas, D. R. ;
Emanuel, K. A. .
GEOPHYSICAL RESEARCH LETTERS, 2010, 37
[13]   Equilibrium Tropical Cyclone Size in an Idealized State of Axisymmetric Radiative-Convective Equilibrium* [J].
Chavas, Daniel R. ;
Emanuel, Kerry .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2014, 71 (05) :1663-1680
[14]  
Chia HH, 2002, J CLIMATE, V15, P2934, DOI 10.1175/1520-0442(2002)015<2934:TIVITG>2.0.CO
[15]  
2
[16]  
Chu J.-H., 2002, The Joint Typhoon Warning Center tropical cyclone best-tracks, 1945-2000
[17]   On the size distribution of Atlantic tropical cyclones [J].
Dean, L. ;
Emanuel, K. A. ;
Chavas, D. R. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[18]   Tropical cyclones [J].
Emanuel, K .
ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, 2003, 31 :75-104
[19]   Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century [J].
Emanuel, Kerry A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (30) :12219-12224
[20]   The Response of Tropical Cyclone Statistics to an Increase in CO2 with Fixed Sea Surface Temperatures [J].
Held, Isaac M. ;
Zhao, Ming .
JOURNAL OF CLIMATE, 2011, 24 (20) :5353-5364