Lyapunov functional and global asymptotic stability for an infection-age model

被引:263
作者
Magal, P. [2 ]
McCluskey, C. C. [1 ]
Webb, G. F. [3 ]
机构
[1] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
[2] Univ Le Havre, Dept Math, F-76058 Le Havre, France
[3] Vanderbilt Univ, Dept Math, Stevenson Ctr 1326, Nashville, TN 37240 USA
关键词
Lyapunov functional; structured population; global stability; age of infection; integrated semigroup; SEIR EPIDEMIOLOGIC MODEL; VARYING INFECTIVITY; NONLINEAR INCIDENCE; VIRUS DYNAMICS; SIR; SYSTEMS;
D O I
10.1080/00036810903208122
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an infection-age model of disease transmission, where both the infectiousness and the removal rate may depend on the infection age. In order to study persistence, the system is described using integrated semigroups. If the basic reproduction number R0 1, then the disease-free equilibrium is globally asymptotically stable. For R0 1, a Lyapunov functional is used to show that the unique endemic equilibrium is globally stable amongst solutions for which disease transmission occurs.
引用
收藏
页码:1109 / 1140
页数:32
相关论文
共 60 条
[1]  
Adda P, 2007, DISCRETE CONT DYN-B, V8, P1
[2]  
ANDERSON R M, 1991
[3]  
Bame N, 2008, MATH BIOSCI ENG, V5, P20
[4]   ON THE GENERAL STRUCTURE OF EPIDEMIC SYSTEMS - GLOBAL ASYMPTOTIC STABILITY [J].
BERETTA, E ;
CAPASSO, V .
COMPUTERS & MATHEMATICS WITH APPLICATIONS-PART A, 1986, 12 (06) :677-694
[5]  
Brauer F., 2000, Mathematical Models in Population Biology and Epidemiology
[6]  
Capasso V., 1993, Mathematical Structure of Epidemic Systems, DOI DOI 10.1007/978-3-540-70514-7
[7]  
D'Agata EMC, 2006, DIFFER INTEGRAL EQU, V19, P573
[8]   Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration [J].
D'Agata, Erika M. C. ;
Magal, Pierre ;
Olivier, Damien ;
Ruan, Shigui ;
Webb, Glenn F. .
JOURNAL OF THEORETICAL BIOLOGY, 2007, 249 (03) :487-499
[9]   Virus dynamics: A global analysis [J].
De Leenheer, P ;
Smith, HL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 63 (04) :1313-1327
[10]  
Diekmann O., 2000, Mathematical epidemiology of infectious diseases: model building, analysis and interpretation