A primal-dual active set method for bilaterally control constrained optimal control of the Navier-Stokes equations

被引:12
作者
De los Reyes, JC [1 ]
机构
[1] EPN Quito, Dept Math, Quito, Ecuador
关键词
optimal control with control constraints; Navier-Stokes equations; primal-dual active set method;
D O I
10.1081/NFA-200045798
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the analysis and numerical solution of distributed optimal control of the Navier-Stokes equations in presence of bilateral pointwise control constraints. The analysis of the problem involves the proof of existence of an optimal solution, as well as the presentation of necessary and sufficient conditions for optimality. For the numerical solution of the problem we apply a primal-dual active set strategy and show global and local convergence properties of the method. Finally, some numerical experiments, which illustrate the performance of the method, are discussed.
引用
收藏
页码:657 / 683
页数:27
相关论文
共 22 条
[1]  
Adams R., 1975, Sobolev space
[2]   Primal-dual strategy for constrained optimal control problems [J].
Bergounioux, M ;
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (04) :1176-1194
[3]   Primal-dual strategy for state-constrained optimal control problems [J].
Bergounioux, M ;
Kunisch, K .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2002, 22 (02) :193-224
[4]   A comparison of a Moreau-Yosida-based active set strategy and interior point methods for constrained optimal control problems [J].
Bergounioux, M ;
Haddou, M ;
Hintermüller, M ;
Kunisch, K .
SIAM JOURNAL ON OPTIMIZATION, 2000, 11 (02) :495-521
[5]  
Constantin P., 1988, Chicago Lectures in Mathematics, DOI DOI 10.7208/CHICAGO/9780226764320.001.0001
[6]  
Dautray R., 2000, Mathematical Analysis and Numerical Methods for Science and Technology, Vol. 6: Evolution Problems II, V6
[7]  
Girault V., 2012, FINITE ELEMENT METHO, V5
[8]   The primal-dual active set strategy as a semismooth Newton method [J].
Hintermüller, M ;
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON OPTIMIZATION, 2003, 13 (03) :865-888
[9]   A semi-smooth Newton method for constrained linear-quadratic control problems [J].
Hintermüller, M ;
Stadler, G .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2003, 83 (04) :219-237