McKean-Vlasov SDEs under measure dependent Lyapunov conditions

被引:46
作者
Hammersley, William R. P. [1 ]
Siska, David [1 ]
Szpruch, Lukasz [1 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2021年 / 57卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
Mckean-Vlasov equations; Mean-field equations; Wasserstein calculus; MEAN-FIELD LIMIT; EQUATIONS;
D O I
10.1214/20-AIHP1106
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the existence of weak solutions to McKean-Vlasov SDEs defined on a domain D subset of R-d with continuous and unbounded coefficients and degenerate diffusion coefficient. Using differential calculus for the flow of probability measures due to Lions, we introduce a novel integrated condition for Lyapunov functions in an infinite dimensional space D x P(D), where P(D) is a space of probability measures on D. Consequently we show existence of solutions to the McKean-Vlasov SDEs on [0, infinity). This leads to a probabilistic proof of the existence of a stationary solution to the nonlinear Fokker-Planck-Kolmogorov equation under very general conditions. Finally, we prove uniqueness under an integrated condition based on a Lyapunov function. This extends the standard monotone-type condition for uniqueness.
引用
收藏
页码:1032 / 1057
页数:26
相关论文
共 36 条
[21]  
Gyongy I, 1996, PROBAB THEORY REL, V105, P143
[22]  
Hamlos P. R, 1950, MEASURE THEORY
[23]  
Kac M., 1956, P 3 BERK S MATH STAT, Vvol 3, ppp 171
[24]  
Khasminskii R. Z., 1980, SIJTHOFF NOORDHOFF, V7
[25]   Weak solutions of mean-field stochastic differential equations [J].
Li, Juan ;
Min, Hui .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2017, 35 (03) :542-568
[26]   MEAN FIELD LIMIT FOR DISORDERED DIFFUSIONS WITH SINGULAR INTERACTIONS [J].
Lucon, Eric ;
Stannat, Wilhelm .
ANNALS OF APPLIED PROBABILITY, 2014, 24 (05) :1946-1993
[28]  
Meleard Sylvie, 1996, MCKEAN VLASOV BOLTZM, P42
[29]  
Prato G. D., 2006, An Introduction to Infinite-Dimensional Analysis
[30]   UNIQUENESS AND NONUNIQUENESS OF SOLUTIONS OF VLASOV-MCKEAN EQUATIONS [J].
SCHEUTZOW, M .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1987, 43 :246-256