McKean-Vlasov SDEs under measure dependent Lyapunov conditions

被引:46
作者
Hammersley, William R. P. [1 ]
Siska, David [1 ]
Szpruch, Lukasz [1 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2021年 / 57卷 / 02期
基金
英国工程与自然科学研究理事会;
关键词
Mckean-Vlasov equations; Mean-field equations; Wasserstein calculus; MEAN-FIELD LIMIT; EQUATIONS;
D O I
10.1214/20-AIHP1106
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the existence of weak solutions to McKean-Vlasov SDEs defined on a domain D subset of R-d with continuous and unbounded coefficients and degenerate diffusion coefficient. Using differential calculus for the flow of probability measures due to Lions, we introduce a novel integrated condition for Lyapunov functions in an infinite dimensional space D x P(D), where P(D) is a space of probability measures on D. Consequently we show existence of solutions to the McKean-Vlasov SDEs on [0, infinity). This leads to a probabilistic proof of the existence of a stationary solution to the nonlinear Fokker-Planck-Kolmogorov equation under very general conditions. Finally, we prove uniqueness under an integrated condition based on a Lyapunov function. This extends the standard monotone-type condition for uniqueness.
引用
收藏
页码:1032 / 1057
页数:26
相关论文
共 36 条
[1]  
Ambrosio L, 2008, LECT MATH, P1
[2]  
[Anonymous], 2016, EXISTENCE UNIQUENESS
[3]  
[Anonymous], 1965, Studies in the Theory of Random Processes
[4]  
Billingsley P., 1999, Convergence of probability measures, DOI DOI 10.1002/9780470316962
[5]   Distances between transition probabilities of diffusions and applications to nonlinear Fokker-Planck-Kolmogorov equations [J].
Bogachev, V. I. ;
Roeckner, M. ;
Shaposhnikov, S. V. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (05) :1262-1300
[6]   Convergence in variation of solutions of nonlinear Fokker-Planck-Kolmogorov equations to stationary measures [J].
Bogachev, Vladimir, I ;
Roeckner, Michael ;
Shaposhnikov, Stanislav, V .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (12) :3681-3713
[7]  
Bogachev Vladimir I., 2015, Fokker-Planck-Kolmogorov Equations, DOI DOI 10.1090/SURV/207
[8]   Quantitative concentration inequalities for empirical measures on non-compact spaces [J].
Bolley, Francois ;
Guillin, Arnaud ;
Villani, Cedric .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (3-4) :541-593
[9]   STOCHASTIC MEAN-FIELD LIMIT: NON-LIPSCHITZ FORCES AND SWARMING [J].
Bolley, Francois ;
Canizo, Jose A. ;
Carrillo, Jose A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (11) :2179-2210
[10]   On conditional McKean Lagrangian stochastic models [J].
Bossy, Mireille ;
Jabir, Jean-Francois ;
Talay, Denis .
PROBABILITY THEORY AND RELATED FIELDS, 2011, 151 (1-2) :319-351