Single Image Super-Resolution with Gradient Guidance

被引:0
|
作者
Man, Wang [1 ]
Du, Xiaofeng [1 ]
机构
[1] Xiamen Univ Technol, Sch Comp & Informat Engn, Xiamen, Peoples R China
来源
2021 INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL AND ROBOTICS (ICCCR 2021) | 2021年
关键词
super-resolution; image gradient guidance; convolutional neural network;
D O I
10.1109/ICCCR49711.2021.9349371
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recovering high-frequency image details such as edges and textures is a challenge of image super-resolution. To improve the reconstruction accuracy, image gradient maps are widely introduced as an additional input or a regularized term directly to existing methods. We argue that the best way to exploit gradient information is to learn from the training data. We propose a convolutional neural network for image super-resolution which is guided by image gradient maps. The gradient guidance provides a selective condition during super-resolution, leading to a more faithful super-resolved image. Our method is a flexible framework for image super-resolution, which can be easily incorporated into existing methods. Extensive benchmark evaluation shows that the proposed method achieves highly competitive performance, outperforming state-of-the-art performance in single image super-resolution.
引用
收藏
页码:304 / 309
页数:6
相关论文
共 50 条
  • [31] Single Image Super-resolution Based on Residual Learning
    Xie, Chao
    Lu, Xiaobo
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING (ICVIP 2017), 2017, : 124 - 129
  • [32] Guided Dual Networks for Single Image Super-Resolution
    Chen, Wenhui
    Liu, Chuangchuang
    Yan, Yitong
    Jin, Longcun
    Sun, Xianfang
    Peng, Xinyi
    IEEE ACCESS, 2020, 8 : 93608 - 93620
  • [33] SRFeat: Single Image Super-Resolution with Feature Discrimination
    Park, Seong-Jin
    Son, Hyeongseok
    Cho, Sunghyun
    Hong, Ki-Sang
    Lee, Seungyong
    COMPUTER VISION - ECCV 2018, PT XVI, 2018, 11220 : 455 - 471
  • [34] SINGLE IMAGE SUPER-RESOLUTION WITH LIMITED NUMBER OF FILTERS
    Nakahara, Yusuke
    Yamaguchi, Takuro
    Ikehara, Masaaki
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 36 - 40
  • [35] High Dynamic Range and Super-Resolution Imaging From a Single Image
    Park, Jae Sung
    Soh, Jae Woong
    Cho, Nam Ik
    IEEE ACCESS, 2018, 6 : 10966 - 10978
  • [36] Global Learnable Attention for Single Image Super-Resolution
    Su, Jian-Nan
    Gan, Min
    Chen, Guang-Yong
    Yin, Jia-Li
    Chen, C. L. Philip
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (07) : 8453 - 8465
  • [37] A transductive graphical model for single image super-resolution
    Cheng, Peitao
    Qiu, Yuanying
    Zhao, Ke
    Wang, Xiumei
    NEUROCOMPUTING, 2015, 148 : 376 - 387
  • [38] Symmetrical Residual Connections for Single Image Super-Resolution
    Li, Xianguo
    Sun, Yemei
    Yang, Yanli
    Miao, Changyun
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2019, 15 (01)
  • [39] Memory Recursive Network for Single Image Super-Resolution
    Liu, Jie
    Zou, Minqiang
    Tang, Jie
    Wu, Gangshan
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 2202 - 2210
  • [40] Efficient mixed transformer for single image super-resolution
    Zheng, Ling
    Zhu, Jinchen
    Shi, Jinpeng
    Weng, Shizhuang
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133