NONLINEAR PARABOLIC EQUATIONS WITH A LOWER ORDER TERM AND L1 DATA

被引:11
作者
Di Nardo, Rosaria [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz Renato Caccioppol, I-80126 Naples, Italy
关键词
Existence result; nonlinear parabolic equations; L-1; data; RENORMALIZED SOLUTIONS; EXISTENCE; UNIQUENESS; ENTROPY;
D O I
10.3934/cpaa.2010.9.929
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of a renormalized solution for a class of nonlinear parabolic problems whose prototype is. {partial derivative u/partial derivative t - Delta(p)u + div(c(x,t)|u|(gamma-1) u) = f in Q(T) u(x,t) = 0 on partial derivative Omega x (0,T) u(x, 0) = u(0)(x) in Omega, where Q(T) = Omega x (0, T), Omega is an open and bounded subset of R-N, N >= 2, T > 0, Delta(p) is the so called p-Laplace operator, gamma = (N + 2)(p - 1)/N+p, c(x,t) is an element of(L-tau(Q(T)))N, tau= N+p/p-1, f is an element of L-1(Q(T)), u(0) is an element of L-1(Omega).
引用
收藏
页码:929 / 942
页数:14
相关论文
共 24 条