Enhanced strength in reduced graphene oxide/nickel composites prepared by molecular-level mixing for structural applications

被引:43
作者
Zhao, Chao [1 ]
机构
[1] Xuchang Univ, Sch Civil Engn, Xuchang 461000, Peoples R China
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2015年 / 118卷 / 02期
关键词
METAL-MATRIX NANOCOMPOSITES; EXFOLIATED GRAPHITE OXIDE; MECHANICAL-PROPERTIES; CARBON NANOTUBES; AQUEOUS DISPERSIONS; COPPER COMPOSITES; ELECTRIC-FIELD; NANOSHEETS; REDUCTION; NANOPLATELETS;
D O I
10.1007/s00339-014-8909-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An effective molecular-level mixing approach was used to prepare reduced graphene oxide (rGO)/Ni powders, which were directly consolidated into rGO/Ni composites by spark plasma sintering. The rGO/Ni composites were found to exhibit a homogeneous dispersion of rGO and a strong interfacial bonding between the rGO and the Ni matrix. The enhanced interfacial bonding was attributed to the oxygen-mediated bonding generated from the interactions between the residue functional groups of rGO and the Ni atoms. Tensile test revealed that 1.5 wt% rGO/Ni composites demonstrated a 95.2 % increase in tensile strength and a 327.6 % increase in yield strength, while simultaneously retained a 12.1 % of elongation. This study thus proposed an effective way to fabricate rGO/Ni composites with enhanced tensile properties.
引用
收藏
页码:409 / 416
页数:8
相关论文
共 42 条
  • [1] Carbon nanotube reinforced metal matrix composites - a review
    Bakshi, S. R.
    Lahiri, D.
    Agarwal, A.
    [J]. INTERNATIONAL MATERIALS REVIEWS, 2010, 55 (01) : 41 - 64
  • [2] All in the graphene family - A recommended nomenclature for two-dimensional carbon materials
    Bianco, Alberto
    Cheng, Hui-Ming
    Enoki, Toshiaki
    Gogotsi, Yury
    Hurt, Robert H.
    Koratkar, Nikhil
    Kyotani, Takashi
    Monthioux, Marc
    Park, Chong Rae
    Tascon, Juan M. D.
    Zhang, Jin
    [J]. CARBON, 2013, 65 : 1 - 6
  • [3] Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing
    Cha, SI
    Kim, KT
    Arshad, SN
    Mo, CB
    Hong, SH
    [J]. ADVANCED MATERIALS, 2005, 17 (11) : 1377 - +
  • [4] Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites
    Chen, Lian-Yi
    Konishi, Hiromi
    Fehrenbacher, Axel
    Ma, Chao
    Xu, Jia-Quan
    Choi, Hongseok
    Xu, Hui-Fang
    Pfefferkorn, Frank E.
    Li, Xiao-Chun
    [J]. SCRIPTA MATERIALIA, 2012, 67 (01) : 29 - 32
  • [5] Carbon-nanotube metal-matrix composites prepared by electroless plating
    Chen, XH
    Xia, JT
    Peng, JC
    Li, WZ
    Xie, SS
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2000, 60 (02) : 301 - 306
  • [6] Enhanced strength in bulk graphene-copper composites
    Chu, Ke
    Jia, Chengchang
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2014, 211 (01): : 184 - 190
  • [7] Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications
    Chu, Ke
    Wu, Qingying
    Jia, Chengchang
    Liang, Xuebing
    Nie, Junhui
    Tian, Wenhuai
    Gai, Guosheng
    Guo, Hong
    [J]. COMPOSITES SCIENCE AND TECHNOLOGY, 2010, 70 (02) : 298 - 304
  • [8] The chemistry of graphene oxide
    Dreyer, Daniel R.
    Park, Sungjin
    Bielawski, Christopher W.
    Ruoff, Rodney S.
    [J]. CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) : 228 - 240
  • [9] Raman spectrum of graphene and graphene layers
    Ferrari, A. C.
    Meyer, J. C.
    Scardaci, V.
    Casiraghi, C.
    Lazzeri, M.
    Mauri, F.
    Piscanec, S.
    Jiang, D.
    Novoselov, K. S.
    Roth, S.
    Geim, A. K.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)
  • [10] AN ADVANCED SHEAR-LAG MODEL APPLICABLE TO DISCONTINUOUS FIBER COMPOSITES
    FUKUDA, H
    CHOU, TW
    [J]. JOURNAL OF COMPOSITE MATERIALS, 1981, 15 (JAN) : 79 - 91