Robustness of asymmetry and coherence of quantum states

被引:247
作者
Piani, Marco [1 ,2 ]
Cianciaruso, Marco [3 ,4 ,5 ]
Bromley, Thomas R. [5 ]
Napoli, Carmine [3 ,4 ,5 ]
Johnston, Nathaniel [6 ]
Adesso, Gerardo [5 ]
机构
[1] Univ Strathclyde, SUPA, Glasgow G4 0NG, Lanark, Scotland
[2] Univ Strathclyde, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[3] Univ Salerno, Dipartimento Fis ER Caianiello, Via Giovanni Paolo 2, I-84084 Fisciano, SA, Italy
[4] Ist Nazl Fis Nucl, Sez Napoli, Grp Collegato Salerno, Salerno, Italy
[5] Univ Nottingham, Sch Math Sci, Univ Pk, Nottingham NG7 2RD, England
[6] Mt Allison Univ, Dept Math & Comp Sci, Sackville, NB E4L 1E2, Canada
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
ENTANGLEMENT;
D O I
10.1103/PhysRevA.93.042107
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum states may exhibit asymmetry with respect to the action of a given group. Such an asymmetry of states can be considered a resource in applications such as quantum metrology, and it is a concept that encompasses quantum coherence as a special case. We introduce explicitly and study the robustness of asymmetry, a quantifier of asymmetry of states that we prove to have many attractive properties, including efficient numerical computability via semidefinite programming and an operational interpretation in a channel discrimination context. We also introduce the notion of asymmetry witnesses, whose measurement in a laboratory detects the presence of asymmetry. We prove that properly constrained asymmetry witnesses provide lower bounds to the robustness of asymmetry, which is shown to be a directly measurable quantity itself. We then focus our attention on coherence witnesses and the robustness of coherence, for which we prove a number of additional results; these include an analysis of its specific relevance in phase discrimination and quantum metrology, an analytical calculation of its value for a relevant class of quantum states, and tight bounds that relate it to another previously defined coherence monotone.
引用
收藏
页数:13
相关论文
共 52 条
[41]   Generalized robustness of entanglement [J].
Steiner, M .
PHYSICAL REVIEW A, 2003, 67 (05) :4
[42]  
Streltsov A., ARXIV151108346
[43]   Measuring Quantum Coherence with Entanglement [J].
Streltsov, Alexander ;
Singh, Uttam ;
Dhar, Himadri Shekhar ;
Bera, Manabendra Nath ;
Adesso, Gerardo .
PHYSICAL REVIEW LETTERS, 2015, 115 (02)
[44]   Tradeoff between extractable mechanical work, accessible entanglement, and ability to act as a reference system, under arbitrary superselection rules [J].
Vaccaro, J. A. ;
Anselmi, F. ;
Wiseman, H. M. ;
Jacobs, K. .
PHYSICAL REVIEW A, 2008, 77 (03)
[45]   ENTANGLEMENT OF IDENTICAL PARTICLES AND REFERENCE PHASE UNCERTAINTY [J].
Vaccaro, John A. ;
Anselmi, Fabio ;
Wiseman, Howard M. .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (04) :427-441
[46]   Semidefinite programming [J].
Vandenberghe, L ;
Boyd, S .
SIAM REVIEW, 1996, 38 (01) :49-95
[47]   Quantifying entanglement [J].
Vedral, V ;
Plenio, MB ;
Rippin, MA ;
Knight, PL .
PHYSICAL REVIEW LETTERS, 1997, 78 (12) :2275-2279
[48]   Robustness of entanglement [J].
Vidal, G ;
Tarrach, R .
PHYSICAL REVIEW A, 1999, 59 (01) :141-155
[49]   Entanglement monotones [J].
Vidal, Guifré .
Journal of Modern Optics, 2000, 47 (2-3 SPEC.) :355-376
[50]  
Watrous J., 2009, THEORY COMPUTING, V5, P217, DOI DOI 10.4086/TOC.2009.V005A011