The relationship between platelet size and the B' infrared peak of natural diamonds revisited

被引:20
作者
Speich, L. [1 ]
Kohn, S. C. [1 ]
Wirth, R. [2 ]
Bulanova, G. P. [1 ]
Smith, C. B. [1 ]
机构
[1] Univ Bristol, Sch Earth Sci, Wills Mem Bldg,Queens Rd, Bristol BS8 1RJ, Avon, England
[2] GFZ German Res Ctr Geosci, Helmholtz Ctr Potsdam, D-14473 Potsdam, Germany
关键词
Diamond; Platelets; FTIR; TEM; GIANT PLATELETS; ABSORPTION; CATHODOLUMINESCENCE; PIPE;
D O I
10.1016/j.lithos.2017.02.010
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Platelets in diamond are extended planar defects that are thought to be generated during the nitrogen aggregation process in type Ia diamonds. They were subjected to intensive research during the 1980s and 1990s but the techniques used for observation of defects in diamond have improved since that time and new insights can be gained by further study. This study combines high resolution Fourier Transform Infrared (FTIR) analysis, with an emphasis on the main platelet peak, and transmission electron microscopic (TEM) imaging. By performing TEM and FTIR analyses on volumes of diamond that were closely spatially related it is shown that the average platelet diameter, D, follows the relationship D = a/x-b where xis the position of the platelet peak in the infrared spectrum, a is a constant and b is the minimum position of the platelet peak. The best fit to the data is obtained if a value of b = 1360 cm(-1) is used, giving a fitted value of a = 221. The observed variation in infrared (IR) peak width can also be explained in terms of this relationship. Additionally, platelet morphology was found to vary according to diameter with large platelets being more elongated. The tendency to become more elongated can be described by the empirical equation AR = 11.9/D+19.6 + 0.4 where AR is the aspect ratio. Using the relationships established here, it will be possible to study platelet abundance and size as a function of parameters such as nitrogen concentration, nitrogen aggregation and diamond residence time in the mantle. This work therefore will open up new methods for constraining the geological history of diamonds of different parageneses and from different localities. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:419 / 426
页数:8
相关论文
共 31 条
  • [1] [Anonymous], EC GEOLOGY UNPUB
  • [2] [Anonymous], EC GEOLOGY IN PRESS
  • [3] [Anonymous], EC GEOLOGY
  • [4] [Anonymous], P IND ACAD SCI A
  • [5] [Anonymous], 1998, Technical Report DFVLR-FB 88-28
  • [6] A venture into the interior of natural diamond: genetic information and implications for the gem industry
    Bulanova, G. P.
    Varshavsky, A. V.
    Kotegov, V. A.
    [J]. JOURNAL OF GEMMOLOGY, 2005, 29 (7-8) : 377 - 386
  • [7] THE FORMATION OF DIAMOND
    BULANOVA, GP
    [J]. JOURNAL OF GEOCHEMICAL EXPLORATION, 1995, 53 (1-3) : 1 - 23
  • [8] THE RELATIONSHIP BETWEEN PLATELET SIZE AND THE FREQUENCY OF THE B' INFRARED-ABSORPTION PEAK IN TYPE-IA DIAMOND
    CLACKSON, SG
    MOORE, M
    WALMSLEY, JC
    WOODS, GS
    [J]. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1990, 62 (02): : 115 - 128
  • [9] CATHODOLUMINESCENCE FROM GIANT PLATELETS, AND OF THE 2.526 EPSILON-V VIBRONIC SYSTEM, IN TYPE IA DIAMONDS
    COLLINS, AT
    WOODS, GS
    [J]. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1982, 45 (04): : 385 - 397
  • [10] Diamonds and their mineral inclusions from the A154 South pipe, Diavik Diamond Mine, Northwest Territories, Canada
    Donnelly, Cara L.
    Stachel, Thomas
    Creighton, Steven
    Muehlenbachs, Karlis
    Whiteford, Sean
    [J]. LITHOS, 2007, 98 (1-4) : 160 - 176