SOLVABILITY OF SOLUTION OF SINGULAR AND DEGENERATE FRACTIONAL NONLINEAR PARABOLIC DIRICHLET PROBLEMS

被引:0
作者
Ahmed, Bourabta [1 ,2 ,3 ]
Taki-Eddine, Oussaeif [1 ,2 ,3 ]
Imad, Rezzoug [1 ,2 ,3 ]
Zainouba, Chebana [1 ,2 ,3 ]
机构
[1] Larbi Ben Mhidi Univ, Dept Math & Informat, Oum El Bouaghi, Algeria
[2] Dynam & Control Syst Lab, Oum El Bouaghi, Algeria
[3] Oum El Bouaghi Univ, Oum El Bouaghi, Algeria
来源
BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES | 2022年 / 17卷 / 01期
关键词
Partial fractional differential equation; energy inequality; existence; uniqueness; singular and degenerate equation; FUNCTIONAL-DIFFERENTIAL EQUATIONS; SPECTRAL METHOD; WEAK SOLUTION; DIFFUSION; EXISTENCE; ORDER; UNIQUENESS;
D O I
10.21915/BIMAS.2022104
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the existence and uniqueness of the weak solution in functional weighted Sobolev space for a class of initial-boundary value degenerate and singular fractional semi-linear parabolic problems. The results are established by using a priori estimate and applying an iterative process based on results obtained for the linear problem.
引用
收藏
页码:105 / 123
页数:19
相关论文
共 46 条
  • [1] Agarwal Ravi P., 2008, Advanced Studies in Contemporary Mathematics, V16, P181
  • [2] Anguraj A., 2010, Communications in Applied Analysis, V14, P505
  • [3] [Anonymous], 2002, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Aribitrary Order
  • [4] [Anonymous], 1995, J FRACT CALC
  • [5] UNIQUE SOLVABILITY OF A DIRICHLET PROBLEM FOR A FRACTIONAL PARABOLIC EQUATION USING ENERGY-INEQUALITY METHOD
    Antara, Benaoua
    Taki-Eddine, Oussaeif
    Imad, Rezzoug
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2020, 26 (03): : 216 - 226
  • [6] Baleanu D., 2010, New Trends in Nanotechnology and Fractional Calculus Applications
  • [7] Belmekki M., 2008, Proc. A. Razmadze Math. Inst., V146, P9
  • [8] Belmekki M, 2008, FIXED POINT THEOR-RO, V9, P423
  • [9] Existence results for fractional order functional differential equations with infinite delay
    Benchohra, A.
    Henderson, J.
    Ntouyas, S. K.
    Ouahab, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) : 1340 - 1350
  • [10] Benchohra M., 2008, Surveys in Mathematics and its Applications, V3, P1