Composite kernel learning

被引:54
|
作者
Szafranski, Marie [1 ,2 ]
Grandvalet, Yves [3 ]
Rakotomamonjy, Alain [4 ]
机构
[1] Univ Evry Val dEssonne, IBISC, CNRS, FRE 3190, F-91025 Evry, France
[2] Univ Aix Marseille, CNRS, LIF, UMR 6166, Marseille, France
[3] Univ Technol Compiegne, CNRS, UMR Heudiasyc 6599, F-60205 Compiegne, France
[4] Univ Rouen, LITIS, EA 4108, F-76801 St Etienne, France
关键词
Supervized learning; Support vector machine; Kernel learning; Structured kernels; Feature selection and sparsity; SELECTION; REGRESSION;
D O I
10.1007/s10994-009-5150-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Support Vector Machine is an acknowledged powerful tool for building classifiers, but it lacks flexibility, in the sense that the kernel is chosen prior to learning. Multiple Kernel Learning enables to learn the kernel, from an ensemble of basis kernels, whose combination is optimized in the learning process. Here, we propose Composite Kernel Learning to address the situation where distinct components give rise to a group structure among kernels. Our formulation of the learning problem encompasses several setups, putting more or less emphasis on the group structure. We characterize the convexity of the learning problem, and provide a general wrapper algorithm for computing solutions. Finally, we illustrate the behavior of our method on multi-channel data where groups correspond to channels.
引用
收藏
页码:73 / 103
页数:31
相关论文
共 50 条
  • [1] Composite kernel learning
    Marie Szafranski
    Yves Grandvalet
    Alain Rakotomamonjy
    Machine Learning, 2010, 79 : 73 - 103
  • [2] Multiple kernel learning using composite kernel functions
    Shiju, S. S.
    Salim, Asif
    Sumitra, S.
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2017, 64 : 391 - 400
  • [3] Shallow Representation Learning via Kernel PCA Improves QSAR Modelability
    Rensi, Stefano E.
    Altman, Russ B.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2017, 57 (08) : 1859 - 1867
  • [4] Group reduced kernel extreme learning machine for fault diagnosis of aircraft engine
    Li, Bing
    Zhao, Yong-Ping
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 96
  • [5] Composite Kernel of Mutual Learning on Mid-Level Features for Hyperspectral Image Classification
    Sima, Haifeng
    Wang, Jing
    Guo, Ping
    Sun, Junding
    Liu, Hongmin
    Xu, Mingliang
    Zou, Youfeng
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) : 12217 - 12230
  • [6] lp-Norm Multiple Kernel Learning
    Kloft, Marius
    Brefeld, Ulf
    Sonnenburg, Soeren
    Zien, Alexander
    JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 953 - 997
  • [7] Sparse Bayesian Modeling With Adaptive Kernel Learning
    Tzikas, Dimitris G.
    Likas, Aristidis C.
    Galatsanos, Nikolaos P.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (06): : 926 - 937
  • [8] KERNEL LEARNING AS MINIMIZATION OF THE SINGLE VALIDATION ESTIMATE
    Sangnier, Maxime
    Gauthier, Jerome
    Rakotomamonjy, Alain
    2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2014,
  • [9] Efficient Sparse Generalized Multiple Kernel Learning
    Yang, Haiqin
    Xu, Zenglin
    Ye, Jieping
    King, Irwin
    Lyu, Michael R.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (03): : 433 - 446
  • [10] HCKBoost: Hybridized composite kernel boosting with extreme learning machines for hyperspectral image classification
    Ergul, Ugur
    Bilgin, Gokhan
    NEUROCOMPUTING, 2019, 334 : 100 - 113