Option pricing in the moderate deviations regime

被引:20
作者
Friz, Peter [1 ,2 ]
Gerhold, Stefan [3 ]
Pinter, Arpad [3 ]
机构
[1] TU, Berlin, Germany
[2] WIAS Berlin, Berlin, Germany
[3] TU Wien, Vienna, Austria
基金
奥地利科学基金会;
关键词
asymptotics; implied volatility; moderate deviations; option pricing; SMALL-TIME ASYMPTOTICS; IMPLIED VOLATILITY; FUNCTIONALS; DIFFUSION; PRINCIPLE; THEOREM; SMILE;
D O I
10.1111/mafi.12156
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We consider call option prices close to expiry in diffusion models, in an asymptotic regime (moderately out of the money) that interpolates between the well-studied cases of at-the-money and out-of-the-money regimes. First and higher order small-time moderate deviation estimates of call prices and implied volatilities are obtained. The expansions involve only simple expressions of the model parameters, and we show how to calculate them for generic local and stochastic volatility models. Some numerical computations for the Heston model illustrate the accuracy of our results.
引用
收藏
页码:962 / 988
页数:27
相关论文
共 43 条
[1]  
[Anonymous], 1991, Graduate Texts in Mathematics
[2]  
Bentata A., 2012, PREPRINT
[3]   Computing the implied volatility in stochastic volatility models [J].
Berestycki, H ;
Busca, J ;
Florent, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) :1352-1373
[4]  
Berestycki H., 2002, Quantitative Finance, V2, P61, DOI 10.1088/1469-7688/2/1/305
[5]  
BINGHAM N. H., 1989, Encyclopedia of Math- ematics and Its Applications, V27
[6]   MIMICKING AN ITO PROCESS BY A SOLUTION OF A STOCHASTIC DIFFERENTIAL EQUATION [J].
Brunick, Gerard ;
Shreve, Steven .
ANNALS OF APPLIED PROBABILITY, 2013, 23 (04) :1584-1628
[7]   Central limit theorem and moderate deviation principle for CKLS model with small random perturbation [J].
Cai, Yujie ;
Wang, Shaochen .
STATISTICS & PROBABILITY LETTERS, 2015, 98 :6-11
[8]   General Smile Asymptotics with Bounded Maturity [J].
Caravenna, Francesco ;
Corbetta, Jacopo .
SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2016, 7 (01) :720-759
[9]   What type of process underlies options? A simple robust test [J].
Carr, P ;
Wu, LR .
JOURNAL OF FINANCE, 2003, 58 (06) :2581-2610
[10]  
De Marco S., 2013, Risk Magazine, V2, P82