Linearization of Gevrey flows on Td with a Brjuno type arithmetical condition

被引:12
作者
Dias, Joao Lopes [1 ,2 ]
Gaivao, Jose Pedro [1 ,2 ]
机构
[1] Univ Lisbon, CEMAPRE, Dept Matemat, ISEG, Rua Quelhas 6, P-1200781 Lisbon, Portugal
[2] Univ Lisbon, ISEG, REM, Rua Quelhas 6, P-1200781 Lisbon, Portugal
关键词
LOWER-DIMENSIONAL TORI; RENORMALIZATION-GROUP; INVARIANT TORI; HAMILTONIAN-SYSTEMS; NORMAL-FORM; SMOOTHNESS; STABILITY; THEOREM;
D O I
10.1016/j.jde.2019.07.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that in the Gevrey topology, a d-torus flow close enough to linear with a unique rotation vector omega is linearizable as long as omega satisfies a novel Brjuno type diophantine condition. The proof is based on the fast convergence under renormalization of the associated Gevrey vector field. It requires a multidimensional continued fractions expansion of omega, and the corresponding characterization of the Brjuno type vectors. This demonstrates that renormalization methods deal very naturally with Gevrey regularity expressed in the decay of Fourier coefficients. In particular, they provide new linearization results including frequencies beyond diophantine in non-analytic topologies. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:7167 / 7212
页数:46
相关论文
共 36 条
[1]  
[Anonymous], 1993, LINEAR PARTIAL DIFFE, DOI DOI 10.1142/1550
[2]  
[Anonymous], 2000, LONDON MATH SOC LECT
[3]  
Arnol'd V.I., 1961, Transl. A.M.S., V46, P213
[4]  
Bounemoura A., 2021, MEM AM MATH SOC, V270, P1319, DOI [10.1090/memo/1319, DOI 10.1090/MEMO/1319]
[5]  
Bounemoura A., 2017, ARXIV170506909
[6]   Effective Stability for Gevrey and Finitely Differentiable Prevalent Hamiltonians [J].
Bounemoura, Abed .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 307 (01) :157-183
[7]   Linearization of analytic and non-analytic germs of diffeomorphisms of (C, 0) [J].
Carletti, T ;
Marmi, S .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2000, 128 (01) :69-85
[8]   Hausdorff dimension of the set of singular pairs [J].
Cheung, Yitwah .
ANNALS OF MATHEMATICS, 2011, 173 (01) :127-167
[9]  
Chevallier N., 2013, MOSCOW J COMBINATORI, V3, P3