Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection

被引:0
作者
Ide, Tsuyoshi [1 ]
Khandelwal, Ankush [2 ]
Kalagnanam, Jayant [1 ]
机构
[1] IBM Res, TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
[2] Univ Minnesota, Dept Comp Sci, Minneapolis, MN 55455 USA
来源
2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM) | 2016年
关键词
D O I
10.1109/ICDM.2016.168
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a new approach to anomaly detection from multivariate noisy sensor data. We address two major challenges: To provide variable-wise diagnostic information and to automatically handle multiple operational modes. Our task is a practical extension of traditional outlier detection, which is to compute a single scalar for each sample. To consistently define the variable-wise anomaly score, we leverage a predictive conditional distribution. We then introduce a mixture of Gaussian Markov random field and its Bayesian inference, resulting in a sparse mixture of sparse graphical models. Our anomaly detection method is capable of automatically handling multiple operational modes while removing unwanted nuisance variables. We demonstrate the utility of our approach using real equipment data from the oil industry.
引用
收藏
页码:955 / 960
页数:6
相关论文
共 22 条
  • [1] Anderson T. W., 2003, INTRO MULTIVARIATE S
  • [2] Bishop C., 2006, Pattern recognition and machine learning, P423
  • [3] Feature Extraction for Change-Point Detection Using Stationary Subspace Analysis
    Blythe, Duncan A. J.
    von Buenau, Paul
    Meinecke, Frank C.
    Mueller, Klaus-Robert
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2012, 23 (04) : 631 - 643
  • [4] LOF: Identifying density-based local outliers
    Breunig, MM
    Kriegel, HP
    Ng, RT
    Sander, J
    [J]. SIGMOD RECORD, 2000, 29 (02) : 93 - 104
  • [5] On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study
    Campos, Guilherme O.
    Zimek, Arthur
    Sander, Jorg
    Campello, Ricardo J. G. B.
    Micenkova, Barbora
    Schubert, Erich
    Assent, Ira
    Houle, Michael E.
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2016, 30 (04) : 891 - 927
  • [6] Corduneanu A., 2001, Artificial intelligence and statistics, P27
  • [7] Sparse inverse covariance estimation with the graphical lasso
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Robert
    [J]. BIOSTATISTICS, 2008, 9 (03) : 432 - 441
  • [8] Hirai S., 2012, P 18 ACM SIGKDD INT, P343
  • [9] Ide T., P 2009 SIAM INT C DA, P97
  • [10] Ide T., 2004, P 10 ACM SIGKDD INT, P440