Analysis of feature matrix in machine learning algorithms to predict energy consumption of public buildings

被引:77
作者
Ding, Yong [1 ,2 ]
Fan, Lingxiao [1 ,2 ]
Liu, Xue [1 ,2 ]
机构
[1] Chongqing Univ, Minist Educ, Joint Int Res Lab Green Bldg & Built Environm, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Minist Sci & Technol, Natl Ctr Int Res Low Carbon & Green Bldg, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
Public building energy consumption; Machine learning; Building energy dataset; Features importance; Recursive feature elimination; OFFICE BUILDINGS; REGRESSION; PERFORMANCE; CAPABILITIES; MODELS;
D O I
10.1016/j.enbuild.2021.111208
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
With the development of building information and energy consumption data, machine learning methods are increasingly being used for predicting and analyzing building energy consumption. In this study, based on the actual energy consumption data of 2370 public buildings in Chongqing, we used six machine learning algorithms and recursive feature elimination to analyze the importance of each feature in the dataset. First, it is necessary to establish optimal prediction models for analyzing the importance of features, and XGboost has demonstrated its superiority in terms of accuracy and efficiency. Regardless of the algorithm, the cumulative contribution rate of the top ten features exceeds 80%, and there is an obvious diminishing marginal utility when the number of features continues to increase. The learning algorithms with similar kernels have similarities in judging feature importance. Tree model-based algorithms can achieve a satisfactory performance with fewer features compared to linear kernel-based algorithms. Furthermore, the dataset plays a crucial role in model performance. To achieve professional supervised learning, two conditions need to be considered simultaneously in data collection: the importance of features in physical processes and whether the samples have adequate variance on these features. Thus, this study can provide a reference for database establishment and big data analysis of urban building energy consumption. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 36 条
[1]  
[Anonymous], 2020, CHONGQING STAT YB 20
[2]   On the development of multi-linear regression analysis to assess energy consumption in the early stages of building design [J].
Asadi, Somayeh ;
Amiri, Shideh Shams ;
Mottahedi, Mohammad .
ENERGY AND BUILDINGS, 2014, 85 :246-255
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]  
Breiman L., 1984, Classification and Regression Trees, DOI [DOI 10.1201/9781315139470, 10.1201/9781315139470]
[5]   Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade [J].
Cao, Xiaodong ;
Dai, Xilei ;
Liu, Junjie .
ENERGY AND BUILDINGS, 2016, 128 :198-213
[6]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[7]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[8]   Contrasting the capabilities of building energy performance simulation programs [J].
Crawley, Drury B. ;
Hand, Jon W. ;
Kurnmert, Michal ;
Griffith, Brent T. .
BUILDING AND ENVIRONMENT, 2008, 43 (04) :661-673
[9]   Short-term building energy model recommendation system: A meta-learning approach [J].
Cui, Can ;
Wu, Teresa ;
Hu, Mengqi ;
Weir, Jeffery D. ;
Li, Xiwang .
APPLIED ENERGY, 2016, 172 :251-263
[10]   Predictive modeling for US commercial building energy use: A comparison of existing statistical and machine learning algorithms using CBECS microdata [J].
Deng, Hengfang ;
Fannon, David ;
Eckelman, Matthew J. .
ENERGY AND BUILDINGS, 2018, 163 :34-43