HYBRID SPARSE AND LOW-RANK TIME-FREQUENCY SIGNAL DECOMPOSITION

被引:0
作者
Fevotte, Cedric [1 ,2 ]
Kowalski, Matthieu [3 ,4 ,5 ]
机构
[1] CNRS, OCA, Lab Lagrange, F-06034 Nice, France
[2] Univ Nice Sophia Antipolis, F-06189 Nice, France
[3] Univ Paris Sud, CentraleSupelec, CNRS, Lab Signaux & Syst, Gif Sur Yvette, France
[4] INRIA, Parietal Project Team, Saclay, France
[5] CEA, Saclay, France
来源
2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2015年
关键词
Low-rank time-frequency synthesis; sparse component analysis; hybrid/morphological decompositions; non-negative matrix factorisation; SEPARATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a new hybrid (or morphological) generative model that decomposes a signal into two (and possibly more) layers. Each layer is a linear combination of localised atoms from a time-frequency dictionary. One layer has a low-rank time-frequency structure while the other as a sparse structure. The time-frequency resolutions of the dictionaries describing each layer may be different. Our contribution builds on the recently introduced Low-Rank Time-Frequency Synthesis (LRTFS) model and proposes an iterative algorithm similar to the popular iterative shrinkage/thresholding algorithm. We illustrate the capacities of the proposed model and estimation procedure on a tonal + transient audio decomposition example.
引用
收藏
页码:464 / 468
页数:5
相关论文
共 21 条
[1]  
[Anonymous], HIERARCHICAL BAYESIA
[2]   Wavelet methods in statistics: Some recent developments and their applications [J].
Antoniadis, Anestis .
STATISTICS SURVEYS, 2007, 1 :16-55
[3]   Adapted and Adaptive Linear Time-Frequency Representations [J].
Balazs, Peter ;
Doerfler, Monika ;
Kowalski, Matthieu ;
Torresani, Bruno .
IEEE SIGNAL PROCESSING MAGAZINE, 2013, 30 (06) :20-31
[4]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[5]  
Chen Z., 2013, P IEEE WORKSH APPL S
[6]   Proximal Splitting Methods in Signal Processing [J].
Combettes, Patrick L. ;
Pesquet, Jean-Christophe .
FIXED-POINT ALGORITHMS FOR INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2011, 49 :185-+
[7]   Hybrid representations for audiophonic signal encoding [J].
Daudet, L ;
Torrésani, B .
SIGNAL PROCESSING, 2002, 82 (11) :1595-1617
[8]  
Daudet L, 2006, LECT NOTES COMPUT SC, V3902, P219
[9]  
Fevotte C., 2014, ADV NEURAL INFORM PR
[10]   Sparse linear regression with structured priors and application to denoising of musical audio [J].
Fevotte, Cedric ;
Torresani, Bruno ;
Daudet, Laurent ;
Godsill, Simon J. .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2008, 16 (01) :174-185