Micropolar effects on the effective elastic properties and elastic fracture toughness of planar lattices

被引:13
|
作者
Berkache, Kamel [1 ,2 ]
Phani, Srikantha [3 ]
Ganghoffer, Jean-Francois [4 ]
机构
[1] Ecole Super Sci Appliquees Alger, BP 474,Pl Martyres, Algiers 16001, Algeria
[2] USTHB, Fac Phys, Dept Energet & Mecan Fluides, BP 32 El Alia, Bab Ezzouar 16111, Alger, Algeria
[3] Univ British Columbia, Dept Mech Engn, 2054-6250 Appl Sci Lane, Vancouver, BC V6T 1Z4, Canada
[4] Univ Lorraine, CNRS, Lab Etud Microstruct & Mecan Mat, 7 Rue Felix Savart,BP 15082, F-57073 Metz 03, France
基金
加拿大自然科学与工程研究理事会;
关键词
Lattice homogenization; Fracture; Micropolar theory; Scaling laws; CELLULAR MATERIALS; CONTINUA; DESIGN; HOMOGENIZATION; EQUIVALENT; BRITTLE;
D O I
10.1016/j.euromechsol.2021.104489
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Effective elastic properties, and mode I elastic fracture toughness of three isotropic planar lattices - hexagonal, kagome, and triangular - are studied from a micropolar continuum perspective. The hexagonal lattice is bending dominated whereas the kagome and the triangular are stretching dominated for any prescribed macroscopic in-plane loading. Discrete asymptotic homogenization is applied to obtain analytical expressions for the topology governed effective micropolar elastic properties of each lattice and their scaling with relative density: the hexagonal lattice is found to possess the largest micropolar internal length parameter at any given relative density. The homogenized micropolar continuum is then discretized by a four-node finite element model to compute its Cauchy and couple-stress intensities for a central crack under mode I loading. Micropolar scaling exponents for mode I fracture toughness with relative density agree well with the estimates from the literature based on fully discrete beam network models. Hexagonal lattice exhibits an order of magnitude higher couple stress intensity factor when compared to the triangular and the kagome lattices of identical relative density, signifying the importance of micropolar effects in bending dominated architectures.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Elastic Waves and Defect Modes in Micropolar Lattices
    Colquitt, D. J.
    Movchan, A. B.
    Movchan, N. V.
    Jones, I. S.
    VIBRATION PROBLEMS ICOVP 2011, 2011, 139 : 707 - 713
  • [2] A unifying principle for evaluating fracture toughness in the elastic and plastic regimes with planar fracture specimens
    Donoso, JR
    Landes, JD
    FATIGUE AND FRACTURE MECHANICS: 30TH VOLUME, 2000, 1360 : 34 - 50
  • [3] Effective elastic properties of plane micropolar nano-composites with interface flexural effects
    Gharahi, Alireza
    Schiavone, Peter
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 149 : 84 - 92
  • [4] The fracture toughness of planar lattices: Imperfection sensitivity
    Romijn, Naomi E. R.
    Fleck, Norman A.
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2007, 55 (12) : 2538 - 2564
  • [5] ON THE ELASTIC PROPERTIES OF LATTICES
    EPSTEIN, PS
    PHYSICAL REVIEW, 1946, 70 (11-1): : 915 - 922
  • [6] Effect of imperfect interface on the effective properties of elastic micropolar multilaminated nanostructures
    Espinosa-Almeyda, Yoanh
    Yanes, Victor
    Rodriguez-Ramos, Reinaldo
    Otero, Jose A.
    Sanchez-Valdes, Cesar F.
    Camacho-Montes, Hector
    Longoria, Pablo Padilla
    Sabina, Federico J.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2023, 103 (08):
  • [7] EFFECTS OF CRACK DEPTH ON ELASTIC PLASTIC FRACTURE-TOUGHNESS
    SOREM, WA
    DODDS, RH
    ROLFE, ST
    INTERNATIONAL JOURNAL OF FRACTURE, 1991, 47 (02) : 105 - 126
  • [8] Elastic Fracture Toughness of Ductile Materials
    Yang, Wei
    Fu, Guoyang
    Li, Chun-Qing
    JOURNAL OF ENGINEERING MECHANICS, 2017, 143 (09)
  • [9] Fracture Toughness for Brittle Fracture of Elastic and Plastic Materials
    Tanabe, Yoshikazu
    MATERIALS TRANSACTIONS, 2013, 54 (03) : 314 - 318
  • [10] ELASTIC AND FRACTURE PROPERTIES OF THE 2-DIMENSIONAL TRIANGULAR AND SQUARE LATTICES
    MONETTE, L
    ANDERSON, MP
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1994, 2 (01) : 53 - 66