An example of a C1,1 polyconvex function with no differentiable convex representative

被引:4
作者
Bevan, J [1 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
关键词
D O I
10.1016/S1631-073X(02)00015-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a C-1,C-1 polyconvex function W such that there exists a fixed 2 x 2 matrix Y with the property that all convex representatives of W have at least two distinct subgradients (and are hence not differentiable) at the point (Y, del Y), showing in particular that a polyconvex function can be smoother than any of its convex representatives. To cite this article: J. Bevan, C. R. Acad. Sci. Paris, Ser. I336 (2003). (C) 2003 Academie des sciences/Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:11 / 14
页数:4
相关论文
共 10 条
[1]   DIFFERENTIABILITY PROPERTIES OF SYMMETRIC AND ISOTROPIC FUNCTIONS [J].
BALL, JM .
DUKE MATHEMATICAL JOURNAL, 1984, 51 (03) :699-728
[2]   Regularity of quasiconvex envelopes [J].
Ball, JM ;
Kirchheim, B ;
Kristensen, J .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 11 (04) :333-359
[3]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[4]  
BEVAN JJ, IN PRESS SINGULAR MI
[5]   CONVEX BODIES AND CONVEXITY ON GRASSMANN CONES .1-5. [J].
BUSEMANN, H ;
EWALD, G .
MATHEMATISCHE ANNALEN, 1963, 151 (01) :1-41
[6]  
EVANS LC, 1986, ARCH RATION MECH AN, V95, P227
[7]  
MULLER S, 1996, LECT NOTES CIME SUMM
[8]  
Necas J., 1977, Abh. Akad. Wiss. DDR, Abt. Math. Naturwiss. Tech., V1, P197
[9]  
ROCKAFELLAR T., 1970, Convex Analysis
[10]   A singular minimizer of a smooth strongly convex functional in three dimensions [J].
Sverak, V ;
Yan, XD .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2000, 10 (03) :213-221