Combining the self-assembled layer-by-layer (LbL) technique with advantageous features of Prussian blue nanoparticles (PB NPs), single-walled carbon nanotubes (SWCNTs), and poly-allylamine hydrochloride (PAH) materials, {PAH vertical bar PB}(3) and {PAH vertical bar PB/SWCNTs}(3) architectures were developed. The focus this paper was to investigate the electrochemical behavior of ITO vertical bar{PAH vertical bar PB/SWCNTs}(3) electrode in the presence of ibuprofen (IBP) for future water treatment systems and sensor development. As far as we concern, this study was accomplished for the first time within these materials. Cyclic voltammograms (CVs) show that {PAH vertical bar PB/SWCNTs}(3) modified electrode presented both characteristic redox processes of PB at 0.12 and 0.87 V (vs. SCE), respectively. When IBP is present, the peak current densities of PB species decrease significantly and proportionally to the concentration of IBP, indicating that interactions might be occurring between these materials. The proposed mechanism of inhibition was based on the possible interaction between IBP and Fe3+ sites of PB structure through its COO- group in the neutral condition. In particular, the inhibition behavior of the peak current density for the first cathodic process (PB-to-PW) was linear in the range 4.7 x 10(-8) to 2.3 x 10(-7) mol L-1 for IBP concentration. This electrochemical performance displayed high sensibility (2532.37 mu A mu mol(-1) cm(-2)) at lower potential (0.12 V vs. SCE) when compared with some of the previously reported electrodes. Therefore, the PB/SWCNTs nanocomposite presents itself as a promising material for developing electrochemical sensors to detect IBP.