Anatomy of a multicamera video surveillance system

被引:15
作者
Jiao, L [1 ]
Wu, Y [1 ]
Wu, G [1 ]
Chang, EY [1 ]
Wang, YF [1 ]
机构
[1] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
关键词
video; image; motion; surveillance; recognition;
D O I
10.1007/s00530-004-0147-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a framework for multicamera video surveillance. The framework consists of three phases: detection, representation, and recognition. The detection phase handles multisource spatiotemporal data fusion for efficiently and reliably extracting motion trajectories from video. The representation phase summarizes raw trajectory data to construct hierarchical, invariant, and content-rich descriptions of the motion events. Finally, the recognition phase deals with event classification and identification on the data descriptors. Through empirical study in a parking-lot-surveillance setting, we show that our spatiotemporal fusion scheme and biased sequence-data learning method are highly effective in identifying suspicious events.
引用
收藏
页码:144 / 163
页数:20
相关论文
共 49 条
[1]   Improving support vector machine classifiers by modifying kernel functions [J].
Amari, S ;
Wu, S .
NEURAL NETWORKS, 1999, 12 (06) :783-789
[2]  
[Anonymous], 1993, Three-Dimensional Computer Vision: A Geometric Viewpoint
[3]  
AZUMA R, 1995, TR95007 U N CAR CHAP
[4]  
Bengio Y., 1999, Neural Computing Surveys, V2
[5]  
BOYD JE, 1998, IEEE INT C MULT SYST
[6]  
BOZKAYA T, 1997, P ACM SIGMOD INT C M, P357
[7]  
Brown R.G., 1983, INTRO RANDOM SIGNAL
[8]  
Burden R. L., 2011, NUMERICAL ANAL, V9th
[9]  
CHRISTIN L, 2002, NEURAL INF PROCESS S, V15, P1441
[10]  
CHUDOVA D, 2002, PATTERN DISCOVERY SE