Hilbert-Kunz multiplicity and an inequality between multiplicity and colength

被引:69
作者
Watanabe, K [1 ]
Yoshida, K
机构
[1] Nihon Univ, Coll Humanities & Sci, Dept Math, Setagaya Ku, Tokyo 1560045, Japan
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
Hilbert-Kunz multiplicity; regular local rings; Cohen-Macaulay local rings; rational singularity; Frobenius endomorphism; tight closure;
D O I
10.1006/jabr.1999.7956
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study local rings of small Hilbert-Kunz multiplicity. In particular, we prove that an unmixed local ring of Hilbert-Kunz multiplicity one is regular and classify two-dimensional Cohen-Macaulay local rings whose Hilbert-Kunz multiplicity is 2 or less. Also, we investigate the inequality between the multiplicity and the colength of the tight closure of parameter ideals inverse to the usual inequality between multiplicity and colength. (C) 2000 Academic Press.
引用
收藏
页码:295 / 317
页数:23
相关论文
共 30 条
[1]  
[Anonymous], 1977, Complex analysis and algebraic geometry, P11
[2]   ON THE ENDOMORPHISM RING OF THE CANONICAL MODULE [J].
AOYAMA, Y ;
GOTO, S .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1985, 25 (01) :21-30
[3]   ON ISOLATED RATIONAL SINGULARITIES OF SURFACES [J].
ARTIN, M .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (01) :129-&
[4]   Hilbert-Kunz functions of cubic curves and surfaces [J].
Buchweitz, RO ;
Chen, Q .
JOURNAL OF ALGEBRA, 1997, 197 (01) :246-267
[5]  
BUCHWEITZ RO, HILBERT KUNZ FUNCTIO
[6]   Hilbert-Kunz function of monomial ideals and binomial hypersurfaces [J].
Conca, A .
MANUSCRIPTA MATHEMATICA, 1996, 90 (03) :287-300
[7]   FROBENIUS AND MULTIPLICITIES [J].
DUTTA, SP .
JOURNAL OF ALGEBRA, 1983, 85 (02) :424-448
[8]  
Fedder Richard, 1989, Commutative algebra, V15, P227, DOI DOI 10.1007/978-1-4612-3660-3_11
[9]   BERTINI THEOREMS FOR LOCAL RINGS [J].
FLENNER, H .
MATHEMATISCHE ANNALEN, 1977, 229 (02) :97-111
[10]   ON THE ASSOCIATED GRADED RINGS OF PARAMETER IDEALS IN BUCHSBAUM RINGS [J].
GOTO, S .
JOURNAL OF ALGEBRA, 1983, 85 (02) :490-534