AN OPTIMAL LIMITING 2D SOBOLEV INEQUALITY

被引:4
作者
Biryuk, Andrei [1 ]
机构
[1] Univ Tecn Lisboa, Ctr Anal Matemat Geometria & Sistemas Dinam, Dept Matemat, Inst Super Tecn, Lisbon, Portugal
关键词
Limiting Sobolev embedding theorems; double logarithmic inequality;
D O I
10.1090/S0002-9939-09-10159-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main goal of this paper is to prove an optimal limiting Sobolev inequality in two dimensions for Holder continuous functions. Additionally, from this inequality we derive the double logarithmic inequality parallel to u parallel to(L)infinity <= parallel to del u parallel to(L)2/root 2 pi alpha root ln(1+6 root 2 pi alpha parallel to u parallel to((C) over dot)alpha/parallel to del u parallel to(L)2 root ln(1+root 2 pi alpha parallel to u parallel to((C) over dot)alpha/parallel to del u parallel to(L)2)) for functions u is an element of W-0(1,2)(B-1) on the unit disk B-1 in R-2, alpha is an element of (0, 1].
引用
收藏
页码:1461 / 1470
页数:10
相关论文
共 15 条
[1]  
Adams A., 2003, Sobolev Spaces, V140
[2]   ON OPTIMIZATION PROBLEMS WITH PRESCRIBED REARRANGEMENTS [J].
ALVINO, A ;
TROMBETTI, G ;
LIONS, PL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1989, 13 (02) :185-220
[3]  
[Anonymous], 1980, Pure and Applied Mathematics
[4]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[5]  
Brezis H., 1980, Nonlinear Analysis Theory, Methods & Applications, V4, P677, DOI 10.1016/0362-546X(80)90068-1
[6]  
BREZIS H, 1980, COMMUN PART DIFF EQ, V5, P773
[7]  
Chavel I., 2001, ISOPERIMETRIC INEQUA
[8]  
ENGLER H, 1989, COMMUN PART DIFF EQ, V14, P541
[9]  
Evans LC, 2010, Partial Differential Equations
[10]   LOGARITHMIC SOBOLEV INEQUALITIES [J].
GROSS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1975, 97 (04) :1061-1083