Endomorphisms of Semigroups of Invertible Nonnegative Matrices over Ordered Associative Rings

被引:2
作者
Nemiro, V. V. [1 ]
机构
[1] Lomonosov Moscow State Univ, Fac Mech & Math, Moscow 119234, Russia
关键词
noncommutative rings; associative rings; ordered rings; semigroup of nonnegative invertible matrices; endomorphisms;
D O I
10.3103/S0027132220050058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a linearly ordered noncommutative ring with 1/2 and let G(n)(R) be the subsemigroup of GL(n)(R) consisting of all matrices with nonnegative coefficients. In the paper, endomorphisms of this semigroup are described for n >= 3.
引用
收藏
页码:181 / 187
页数:7
相关论文
共 8 条
[1]  
Bunina EI, 2012, MATH NOTES+, V91, P3, DOI [10.4213/mzm8410, 10.1134/S0001434612010014]
[2]  
Bunina E.I., 2007, THE J, V142, P1867, DOI [10.1007/s10958-007-0, 10.1007/s10958-007-0094-5, DOI 10.1007/S10958-007-0094-5]
[3]  
Bunina E. I, 2009, J MATH SCI N Y, V162, P633, DOI [10.1007/s10958-009-9650-5, 10.1007/s10958-009-9]
[4]  
Bunina E.I., 2008, THE J, V149, P1063, DOI [10.1007/s10958-008-0045-9, DOI 10.1007/S10958-008-0045-9, 10.1007/s10958-008-0]
[5]  
Bunina E.I., 2009, THE J, V163, P493, DOI [10.1007/s10958-009-9, 10.1007/s10958-009-9687-5, DOI 10.1007/S10958-009-9687-5]
[6]  
Mihalev A.V, 1970, MATH USSR SB, V10, P547, DOI [10.1070/SM1970v010n04ABEH001680, DOI 10.1070/SM1970V010N04ABEH001680]
[7]   Automorphisms of semigroups of invertible matrices with nonnegative integer elements [J].
Semenov, P. P. .
SBORNIK MATHEMATICS, 2012, 203 (09) :1342-1356
[8]  
Semenov PP., 2013, J MATH SCI NEW YORK, V193, P591, DOI DOI 10.1007/S10958-013-1486-3