A Convolutional Neural Network for Regional Photovoltaic Generation Point Forecast

被引:4
作者
Zhang, Xuekai [1 ]
Yang, Yanyong [2 ]
Wang, Huaying [2 ]
Zhao, Feitao [2 ]
Yan, Fangqing [3 ]
Wang, Mengxia [3 ]
机构
[1] State Grid Shandong Elect Power Co, Jinan 250021, Shandong, Peoples R China
[2] State Grid Shandong Elect Power Co, Liaocheng Power Supply Co, Liaocheng 252000, Shandong, Peoples R China
[3] Shandong Univ, Minist Educ, Key Lab Power Syst Intelligent Dispatch & Control, Jinan 250061, Shandong, Peoples R China
来源
2020 INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT AND BIOENGINEERING (ICEEB 2020) | 2020年 / 185卷
关键词
POWER OUTPUT; PREDICTION;
D O I
10.1051/e3sconf/202018501079
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As the rapid growth of photovoltaic (PV) generation capacity, the form of regional PV power integrated by multiple PV plants is becoming more and more common. The changing law of regional PV power is of great significance to control the operation of the power system. This paper presents a novel regional PV power point forecast method that uses the convolutional neural network (CNN) model. In the method, the structure of CNN is applied to extract the nonlinear features between the input data and regional PV power. The forecast of regional PV power in a real power grid is carried out to illustrate the validity of the proposed method. Verification results show that the CNN model can provide more accurate point forecast for regional PV power results than the traditional regional PV power forecast methods.
引用
收藏
页数:5
相关论文
共 12 条
[1]   Review of photovoltaic power forecasting [J].
Antonanzas, J. ;
Osorio, N. ;
Escobar, R. ;
Urraca, R. ;
Martinez-de-Pison, F. J. ;
Antonanzas-Torres, F. .
SOLAR ENERGY, 2016, 136 :78-111
[2]   Regional forecasts of photovoltaic power generation according to different data availability scenarios: a study of four methods [J].
Fonseca, Joao Gari da Silva, Jr. ;
Oozeki, Takashi ;
Ohtake, Hideaki ;
Takashima, Takumi ;
Ogimoto, Kazuhiko .
PROGRESS IN PHOTOVOLTAICS, 2015, 23 (10) :1203-1218
[3]   Recent advances in convolutional neural networks [J].
Gu, Jiuxiang ;
Wang, Zhenhua ;
Kuen, Jason ;
Ma, Lianyang ;
Shahroudy, Amir ;
Shuai, Bing ;
Liu, Ting ;
Wang, Xingxing ;
Wang, Gang ;
Cai, Jianfei ;
Chen, Tsuhan .
PATTERN RECOGNITION, 2018, 77 :354-377
[4]   Flower classification using deep convolutional neural networks [J].
Hiary, Hazem ;
Saadeh, Heba ;
Saadeh, Maha ;
Yaqub, Mohammad .
IET COMPUTER VISION, 2018, 12 (06) :855-862
[5]   An ARMAX model for forecasting the power output of a grid connected photovoltaic system [J].
Li, Yanting ;
Su, Yan ;
Shu, Lianjie .
RENEWABLE ENERGY, 2014, 66 :78-89
[6]   Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States [J].
Mathiesen, Patrick ;
Kleissl, Jan .
SOLAR ENERGY, 2011, 85 (05) :967-977
[7]   Data-driven upscaling methods for regional photovoltaic power estimation and forecast using satellite and numerical weather prediction data [J].
Pierro, Marco ;
De Felice, Matteo ;
Maggioni, Enrico ;
Moser, David ;
Perotto, Alessandro ;
Spade, Francesco ;
Cornaro, Cristina .
SOLAR ENERGY, 2017, 158 :1026-1038
[8]   A probabilistic approach to the estimation of regional photovoltaic power production [J].
Saint-Drenan, Y. M. ;
Good, G. H. ;
Braun, M. .
SOLAR ENERGY, 2017, 147 :257-276
[9]   Analysis of the uncertainty in the estimates of regional PV power generation evaluated with the upscaling method [J].
Saint-Drenan, Y. M. ;
Good, G. H. ;
Braun, M. ;
Freisinger, T. .
SOLAR ENERGY, 2016, 135 :536-550
[10]   Deep learning based ensemble approach for probabilistic wind power forecasting [J].
Wang, Huai-zhi ;
Li, Gang-qiang ;
Wang, Gui-bin ;
Peng, Jian-chun ;
Jiang, Hui ;
Liu, Yi-tao .
APPLIED ENERGY, 2017, 188 :56-70