Role of Methyl Acetate in Highly Reproducible Efficient CsPbI3 Perovskite Quantum Dot Solar Cells

被引:41
作者
Han, Rui [1 ,2 ,3 ]
Zhao, Qian [4 ]
Su, Jian [5 ]
Zhou, Xiaojun [1 ,2 ,3 ]
Ye, Xiaofang [1 ,2 ,3 ]
Liang, Xiaojuan [1 ,2 ,3 ]
Li, Juan [1 ,2 ,3 ]
Cai, Hongkun [1 ,2 ,3 ]
Ni, Jian [1 ,2 ,3 ]
Zhang, Jianjun [1 ,2 ,3 ]
机构
[1] Nankai Univ, Coll Elect Informat & Opt Engn, Dept Elect Sci & Technol, Minist Educ, Tianjin 300350, Peoples R China
[2] Nankai Univ, Engn Res Ctr Thin Film Optoelect Technol, Minist Educ, Tianjin 300350, Peoples R China
[3] Key Lab Photoelect Thin Film Devices & Technol Ti, Tianjin 300350, Peoples R China
[4] Nankai Univ, Sch Mat Sci & Engn, Tianjin 300350, Peoples R China
[5] Changzhou Univ, Sch Microelect & Control Engn, Changzhou 213164, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
LIGHT-EMITTING-DIODES; ALPHA-CSPBI3; PEROVSKITE; PHOTOLUMINESCENCE; PHOTODETECTORS; NANOCRYSTALS; STABILITY; ENERGY;
D O I
10.1021/acs.jpcc.0c09057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The best research-cell efficiency for quantum dot solar cells has boosted from 11.6 to 18.1% within 5 years due to the evolution of perovskite quantum dots (PQDs) that are being intensively developed along with the flourishing of perovskite thin-film photovoltaics. During the fabrication of PQD devices, as far as we know, methyl acetate (MeOAc) is an ineluctable solvent in ligand exchange for producing highly efficient solar cells. Nevertheless, the reproducibility for PQD solar cells using MeOAc treatment is poor since it has to make a trade-off between removing long-chain organic ligands for high charge transport and keeping them for the stabilization of the black crystal phase. Herein, we demonstrate the degree of MeOAc treatment on CsPbI3 PQD solid films in detail and clarify that MeOAc treatment is able to not only remove the oleyl ligands for promoting the charge transport but also passivate the surface defects in the CsPbI3 PQD solid films. It is noted that immoderate MeOAc treatment could induce the formation of the delta-phase, leading to the degradation of device performance. After locating the balance for MeOAc treatment, the CsPbI3 PQD solar cells are fabricated and optimized without using any additional modifications except MeOAc treatment, and these additive-free devices possess a conversion efficiency surpassing 12%.
引用
收藏
页码:8469 / 8478
页数:10
相关论文
共 77 条
[1]   Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals [J].
Akkerman, Quinten A. ;
Raino, Gabriele ;
Kovalenko, Maksym V. ;
Manna, Liberato .
NATURE MATERIALS, 2018, 17 (05) :394-405
[2]   Strongly emissive perovskite nanocrystal inks for high-voltage solar cells [J].
Akkerman, Quinten A. ;
Gandini, Marina ;
Di Stasio, Francesco ;
Rastogi, Prachi ;
Palazon, Francisco ;
Bertoni, Giovanni ;
Ball, James M. ;
Prato, Mirko ;
Petrozza, Annamaria ;
Manna, Liberato .
NATURE ENERGY, 2017, 2 (02)
[3]   Bright triplet excitons in caesium lead halide perovskites [J].
Becker, Michael A. ;
Vaxenburg, Roman ;
Nedelcu, Georgian ;
Sercel, Peter C. ;
Shabaev, Andrew ;
Mehl, Michael J. ;
Michopoulos, John G. ;
Lambrakos, Samuel G. ;
Bernstein, Noam ;
Lyons, John L. ;
Stoferle, Thilo ;
Mahrt, Rainer F. ;
Kovalenko, Maksym V. ;
Norris, David J. ;
Raino, Gabriele ;
Efros, Alexander L. .
NATURE, 2018, 553 (7687) :189-+
[4]   Stable CsPb1-xZnxI3 Colloidal Quantum Dots with Ultralow Density of Trap States for High-Performance Solar Cells [J].
Bi, Chenghao ;
Sun, Xuejiao ;
Huang, Xin ;
Wang, Shixun ;
Yuan, Jifeng ;
Wang, Jun Xi ;
Pullerits, Tonu ;
Tian, Jianjun .
CHEMISTRY OF MATERIALS, 2020, 32 (14) :6105-6113
[5]   Improved Stability and Photodetector Performance of CsPbI3 Perovskite Quantum Dots by Ligand Exchange with Aminoethanethiol [J].
Bi, Chenghao ;
Kershaw, Stephen, V ;
Rogach, Andrey L. ;
Tian, Jianjun .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (29)
[6]   Lead Telluride Quantum Dot Solar Cells Displaying External Quantum Efficiencies Exceeding 120% [J].
Boehm, Marcus L. ;
Jellicoe, Tom C. ;
Tabachnyk, Maxim ;
Davis, Nathaniel J. L. K. ;
Wisnivesky-Rocca-Rivarola, Florencia ;
Ducati, Caterina ;
Ehrler, Bruno ;
Bakulin, Artem A. ;
Greenham, Neil C. .
NANO LETTERS, 2015, 15 (12) :7987-7993
[7]   Colloidal Quantum Dot Solar Cells [J].
Carey, Graham H. ;
Abdelhady, Ahmed L. ;
Ning, Zhijun ;
Thon, Susanna M. ;
Bakr, Osman M. ;
Sargent, Edward H. .
CHEMICAL REVIEWS, 2015, 115 (23) :12732-12763
[8]   High Efficiency Mesoscopic Solar Cells Using CsPbI3 Perovskite Quantum Dots Enabled by Chemical Interface Engineering [J].
Chen, Keqiang ;
Jin, Wei ;
Zhang, Yupeng ;
Yang, Tingqiang ;
Reiss, Peter ;
Zhong, Qiaohui ;
Bach, Udo ;
Li, Qitao ;
Wang, Yingwei ;
Zhang, Han ;
Bao, Qiaoliang ;
Liu, Yueli .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (08) :3775-3783
[9]   Short-Chain Ligand-Passivated Stable α-CsPbI3 Quantum Dot for All-Inorganic Perovskite Solar Cells [J].
Chen, Keqiang ;
Zhong, Qiaohui ;
Chen, Wen ;
Sang, Binghua ;
Wang, Yingwei ;
Yang, Tingqiang ;
Liu, Yueli ;
Zhang, Yupeng ;
Zhang, Han .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (24)
[10]   High-Open-Circuit-Voltage Solar Cells Based on Bright Mixed-Halide CsPbBrI2 Perovskite Nanocrystals Synthesized under Ambient Air Conditions [J].
Christodoulou, Sotirios ;
Di Stasio, Francesco ;
Pradhan, Santanu ;
Stavrinadis, Alexandros ;
Konstantatos, Gerasimos .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (14) :7621-7626