Multiscale 3D analysis of creep cavities in AISI type 316 stainless steel

被引:24
作者
Burnett, T. L. [1 ,2 ]
Geurts, R. [2 ]
Jazaeri, H. [3 ]
Northover, S. M. [3 ]
McDonald, S. A. [1 ,4 ]
Haigh, S. J. [1 ]
Bouchard, P. J. [3 ]
Withers, P. J. [1 ,4 ]
机构
[1] Univ Manchester, Sch Mat, Manchester M13 9PL, Lancs, England
[2] FEI Co, Eindhoven, Netherlands
[3] Open Univ, Milton Keynes MK7 6AA, Bucks, England
[4] Univ Manchester, Sch Mat, BP Int Ctr Adv Mat, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
Creep cavitation; Residual stress; Phase transformations; CT; FIB; SEM; TEM; EDX; DELTA-FERRITE; SIGMA-PHASE; CAVITATION; PRECIPITATION; TOMOGRAPHY; TRANSFORMATION; BEHAVIOR; QUANTIFICATION; MECHANISM; DUCTILITY;
D O I
10.1179/1743284714Y.0000000639
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A sample of AISI type 316 stainless steel from a power station steam header, showing reheat cracking, was removed from service and has been examined by a combination of microscale Xray computed tomography (CT), nanoscale serial section focused ion beam-scanning electron microscopy (FIB-SEM), energy dispersive X-ray (EDX) spectrum imaging and transmission electron microscopy (TEM). Multiscale three-dimensional analysis using correlative tomography allowed key regions to be found and analysed with high resolution techniques. The grain boundary analysed was decorated with micrometre sized, facetted cavities, M23C6 carbides, ferrite and G phase but no sigma phase. Smaller intragranular M23C6 particles were also observed, close to the grain boundaries. This intimate coexistence suggests that the secondary phases will control the nucleation and growth of the cavities. Current models of cavitation, based on isolated idealised grain boundary cavities, are oversimplified.
引用
收藏
页码:522 / 534
页数:13
相关论文
共 57 条
[1]  
BARCIK J, 1988, MATER SCI TECH SER, V4, P5, DOI 10.1179/026708388790329710
[2]   SHAPE AND MECHANISM OF FORMATION OF M23C6 CARBIDE IN AUSTENITE [J].
BECKITT, FR ;
CLARK, BR .
ACTA METALLURGICA, 1967, 15 (01) :113-&
[3]   Quantification of creep cavitation damage around a crack in a stainless steel pressure vessel [J].
Bouchard, PJ ;
Withers, PJ ;
McDonald, SA ;
Heenan, RK .
ACTA MATERIALIA, 2004, 52 (01) :23-34
[4]   Correlative Tomography [J].
Burnett, T. L. ;
McDonald, S. A. ;
Gholinia, A. ;
Geurts, R. ;
Janus, M. ;
Slater, T. ;
Haigh, S. J. ;
Ornek, C. ;
Almuaili, F. ;
Engelberg, D. L. ;
Thompson, G. E. ;
Withers, P. J. .
SCIENTIFIC REPORTS, 2014, 4
[5]   An improved method to identify grain boundary creep cavitation in 316H austenitic stainless steel [J].
Chen, B. ;
Flewitt, P. E. J. ;
Smith, D. J. ;
Jones, C. P. .
ULTRAMICROSCOPY, 2011, 111 (05) :309-313
[6]  
Coleman MC, 1998, INTERNATIONAL CONFERENCE ON INTEGRITY OF HIGH-TEMPERATURE WELDS, P169
[7]   Void growth in copper during high-temperature power-law creep [J].
Dzieciol, K. ;
Borbely, A. ;
Sket, F. ;
Isaac, A. ;
Di Michiel, M. ;
Cloetens, P. ;
Buslaps, Th ;
Pyzalla, A. R. .
ACTA MATERIALIA, 2011, 59 (02) :671-677
[8]  
Evans R.W., 1985, CREEP METALS ALLOYS
[9]  
Gill T. P. S., 1986, WELD RES S, P123
[10]   3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system [J].
Groeber, M. A. ;
Haley, B. K. ;
Uchic, M. D. ;
Dimiduk, D. M. ;
Ghosh, S. .
MATERIALS CHARACTERIZATION, 2006, 57 (4-5) :259-273