An output sensitive algorithm for computing a maximum independent set of a circle graph

被引:5
作者
Nash, Nicholas [1 ]
Gregg, David [1 ]
机构
[1] Trinity Coll Dublin, Dept Comp Sci, Dublin, Ireland
关键词
Design of algorithms; Graph algorithms; Circle graph; Maximum independent set; Maximum stable set;
D O I
10.1016/j.ipl.2010.05.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an output sensitive algorithm for computing a maximum independent set of an unweighted circle graph. Our algorithm requires O(n min{d,alpha}) time at worst, for an n vertex circle graph where a is the independence number of the circle graph and d is its density. Previous algorithms for this problem required Theta(nd) time at worst. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:630 / 634
页数:5
相关论文
共 11 条
[1]  
APOSTOLICO A, 1993, DISCRETE APPL MATH, V41, P179, DOI 10.1016/0166-218X(93)90038-P
[2]   NEW CLIQUE AND INDEPENDENT SET ALGORITHMS FOR CIRCLE GRAPHS [J].
APOSTOLICO, A ;
ATALLAH, MJ ;
HAMBRUSCH, SE .
DISCRETE APPLIED MATHEMATICS, 1992, 36 (01) :1-24
[3]  
ASANO T, 1991, IEICE TRANS COMMUN, V74, P681
[4]  
Gavril F., 1973, Networks, V3, P261, DOI DOI 10.1002/NET.3230030305
[5]  
GOLDSCHMIDT O, 1994, IEICE T FUND ELECTR, VE77A, P1672
[6]  
Golumbic M.C., 2004, ANN DISCRETE MATH, V57
[7]   THE COMPLEXITY OF DOMINATION PROBLEMS IN CIRCLE GRAPHS [J].
KEIL, JM .
DISCRETE APPLIED MATHEMATICS, 1993, 42 (01) :51-63
[8]  
NASH N, 2009, J EXP ALGORITHMICS, V13, P1
[9]   FINDING A MAXIMUM PLANAR SUBSET OF A SET OF NETS IN A CHANNEL [J].
SUPOWIT, KJ .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1987, 6 (01) :93-94
[10]  
TISKIN A, 2009, ABS07073619 CORR