A mixed derivative terms removing method in multi-asset option pricing problems

被引:16
作者
Company, R. [1 ]
Egorova, V. N. [1 ]
Jodar, L. [1 ]
Soleymani, F. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Multidisciplinar, Camino Vera S-N, E-46022 Valencia, Spain
关键词
Multiasset option pricing; Multidimensional partial differential equations; Mixed derivative terms; LDLT factorization; Bunch-Kaufman factorization; SCHEMES; EQUATIONS; SYSTEMS;
D O I
10.1016/j.aml.2016.04.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The challenge of removing the mixed derivative terms of a second order multidimensional partial differential equation is addressed in this paper. The proposed method, which is based on proper algebraic factorization of the so-called diffusion matrix, depends on the semidefinite or indefinite character of this matrix. Computational cost of the transformed equation is considerably reduced and well-known numerical drawbacks are avoided. (c) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:108 / 114
页数:7
相关论文
共 27 条
[1]  
[Anonymous], 1965, The algebraic eigenvalue problem
[2]  
[Anonymous], 2002, Accuracy and stability of numerical algorithms
[3]  
[Anonymous], 2012, MATRIX COMPUTATIONS
[4]  
BUNCH JR, 1977, MATH COMPUT, V31, P163, DOI 10.1090/S0025-5718-1977-0428694-0
[5]   DIRECT METHODS FOR SOLVING SYMMETRIC INDEFINITE SYSTEMS OF LINEAR EQUATIONS [J].
BUNCH, JR ;
PARLETT, BN .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1971, 8 (04) :639-&
[6]   THE EVALUATION OF AMERICAN OPTION PRICES UNDER STOCHASTIC VOLATILITY AND JUMP-DIFFUSION DYNAMICS USING THE METHOD OF LINES [J].
Chiarella, Carl ;
Kang, Boda ;
Meyer, Gunter H. ;
Ziogas, Andrew .
INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2009, 12 (03) :393-425
[7]   Numerical solution of two asset jump diffusion models for option valuation [J].
Clift, Simon S. ;
Forsyth, Peter A. .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (06) :743-782
[8]   Removing the Correlation Term in Option Pricing Heston Model: Numerical Analysis and Computing [J].
Company, R. ;
Jodar, L. ;
Fakharany, M. ;
Casaban, M. -C. .
ABSTRACT AND APPLIED ANALYSIS, 2013,
[9]   HIGH-ORDER COMPACT SCHEMES FOR PARABOLIC PROBLEMS WITH MIXED DERIVATIVES IN MULTIPLE SPACE DIMENSIONS [J].
Duering, Bertram ;
Heuer, Christof .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (05) :2113-2134
[10]   Positive finite difference schemes for a partial integro-differential option pricing model [J].
Fakharany, M. ;
Company, R. ;
Jodar, L. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 :320-332