Stochastic integration and stochastic PDEs driven by jumps on the dual of a nuclear space

被引:13
作者
Fonseca-Mora, C. A. [1 ]
机构
[1] Univ Costa Rica, Escuela Matemat, San Jose 115012060, Costa Rica
来源
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS | 2018年 / 6卷 / 04期
关键词
Cylindrical martingale-valued measures; Dual of a nuclear space; Stochastic integrals; Stochastic evolution equations; LOCALLY CONVEX-SPACES; EVOLUTION EQUATIONS; DIFFERENTIAL-EQUATION; LANGEVIN-EQUATIONS; OPERATORS;
D O I
10.1007/s40072-018-0117-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a novel theory of weak and strong stochastic integration for cylindrical martingale-valued measures taking values in the dual of a nuclear space. This is applied to develop a theory of SPDEs with rather general coefficients. In particular, we can then study SPDEs driven by general Levy processes in this context.
引用
收藏
页码:618 / 689
页数:72
相关论文
共 34 条
[1]  
[Anonymous], 1968, J. Funct. Anal., DOI DOI 10.1016/0022-1236(68)90008-6
[2]  
Applebaum D, 2006, LECT NOTES MATH, V1874, P171
[3]   SEMIGROUPS OF OPERATORS ON LOCALLY CONVEX-SPACES [J].
BABALOLA, VA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 199 (NOV) :163-179
[4]  
Bogachev VI., 2007, MEASURE THEORY, DOI [10.1007/978-3-540-34514-5, DOI 10.1007/978-3-540-34514-5]
[5]   Invariant measures for generalized Langevin equations in conuclear space [J].
Bojdecki, T ;
Jakubowski, J .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (01) :1-24
[6]   LANGEVIN-EQUATIONS FOR L'-VALUED GAUSSIAN-PROCESSES AND FLUCTUATION LIMITS OF INFINITE PARTICLE-SYSTEMS [J].
BOJDECKI, T ;
GOROSTIZA, LG .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 73 (02) :227-244
[7]   STOCHASTIC INTEGRATION FOR INHOMOGENEOUS WIENER PROCESS IN THE DUAL OF A NUCLEAR SPACE [J].
BOJDECKI, T ;
JAKUBOWSKI, J .
JOURNAL OF MULTIVARIATE ANALYSIS, 1990, 34 (02) :185-210
[8]   ITO STOCHASTIC INTEGRAL IN THE DUAL OF A NUCLEAR SPACE [J].
BOJDECKI, T ;
JAKUBOWSKI, J .
JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 31 (01) :40-58
[9]   FIXED-POINTS AND STABILITY FOR A SUM OF 2 OPERATORS IN LOCALLY CONVEX SPACES [J].
CAIN, GL ;
NASHED, MZ .
PACIFIC JOURNAL OF MATHEMATICS, 1971, 39 (03) :581-&
[10]  
Da Prato G., 2014, STOCHASTIC EQUATIONS, P152, DOI [10.1017/CBO9780511666223, 10.1017/CBO9781107295513]