On lattice reduction for polynomial matrices

被引:66
作者
Mulders, T
Storjohann, A [1 ]
机构
[1] Univ Waterloo, Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[2] COMIT AG, CH-8004 Zurich, Switzerland
[3] ETH, Inst Comp Sci, Dept Comp Sci, Zurich, Switzerland
关键词
polynomial matrices; lattice reduction; rank profile; determinant; Hermite form; Popov form;
D O I
10.1016/S0747-7171(02)00139-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A simple algorithm for lattice reduction of polynomial Matrices is described and analysed. The algorithm is adapted and applied to various. tasks, including-rank profile and determinant computation, transformation to Hermite and Popov canonical form, polynomial linear system solving and short vector computation. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:377 / 401
页数:25
相关论文
共 16 条
  • [1] Atiyah M. F., 1969, Introduction To Commutative Algebra, Addison-Wesley series in mathematics
  • [2] Beckermann B, 1999, ISSAC 99: PROCEEDINGS OF THE 1999 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, P189, DOI 10.1145/309831.309929
  • [3] BECKERMANN B, 2002, 20021 ENS LYON
  • [4] HERMITE NORMAL-FORM COMPUTATION USING MODULO DETERMINANT ARITHMETIC
    DOMICH, PD
    KANNAN, R
    TROTTER, LE
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 1987, 12 (01) : 50 - 59
  • [5] GATHEN JV, 1984, MATH COMPUT, V42, P637, DOI 10.1090/S0025-5718-1984-0736459-9
  • [6] KAILATH T., 1979, Linear systems
  • [7] Algorithms for computing the Hermite reduction of a polynomial matrix
    Labhalla, S
    Lombardi, H
    Marlin, R
    [J]. THEORETICAL COMPUTER SCIENCE, 1996, 161 (1-2) : 69 - 92
  • [8] MACDUFFEE CC, 1956, THEORY MATRICES
  • [9] Mulders T., 2000, International Symposium on Symbolic and Algebraic Computation. Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation, P242, DOI 10.1145/345542.345644
  • [10] MULDERS T, 2000, IN PRESS J SYMBOLIC