On the Poincare expansion of the Hurwitz zeta function

被引:1
|
作者
Fejzullahu, Bujar [1 ]
机构
[1] Univ Prishtina, Dept Math, Pristina, Kosovo
关键词
Hurwitz zeta function; Poincare expansion; exponential improved expansion; incomplete gamma function; Lommel functions; SERIES;
D O I
10.1007/s10986-021-09527-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we extend the result of Paris [R.B. Paris, The Stokes phenomenon associated with the Hurwitz zeta function zeta(s, a), Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461(2053):297-304, 2005] on the exponentially improved expansion of the Hurwitz zeta function zeta(s, z), the expansion of which can be reduced to the large-z Poincare asymptotics of zeta(s, z). Furthermore, we deduce some new series and integral representations of the Hurwitz zeta function zeta(s, z).
引用
收藏
页码:460 / 470
页数:11
相关论文
共 50 条
  • [21] New inequalities for the Hurwitz zeta function
    Necdet Batir
    Proceedings Mathematical Sciences, 2008, 118 : 495 - 503
  • [22] On real zeros of the Hurwitz zeta function
    Ikeda, Karin
    JOURNAL OF NUMBER THEORY, 2024, 258 : 269 - 280
  • [23] The fourth moment of the Hurwitz zeta function
    Heap, Winston
    Sahay, Anurag
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2025, 2025 (818): : 291 - 319
  • [24] SUMS OF DIGITS AND THE HURWITZ ZETA FUNCTION
    ALLOUCHE, JP
    SHALLIT, J
    LECTURE NOTES IN MATHEMATICS, 1990, 1434 : 19 - 30
  • [25] Sums involving the Hurwitz zeta function
    Kanemitsu, S
    Kumagai, H
    Yoshimoto, M
    RAMANUJAN JOURNAL, 2001, 5 (01): : 5 - 19
  • [26] REMARK ON THE HURWITZ ZETA-FUNCTION
    APOSTOL, TM
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 57 (05) : 370 - 370
  • [27] Sums Involving the Hurwitz Zeta Function
    Shigeru Kanemitsu
    Hiroshi Kumagai
    Masami Yoshimoto
    The Ramanujan Journal, 2001, 5 : 5 - 19
  • [28] Real zeros of the Hurwitz zeta function
    Matsusaka, Toshiki
    ACTA ARITHMETICA, 2018, 183 (01) : 53 - 62
  • [29] Some Approximations with Hurwitz Zeta Function
    Aygunes, Aykut Ahmet
    FILOMAT, 2020, 34 (02) : 528 - 534
  • [30] Vanishing of the integral of the Hurwitz zeta function
    Broughan, KA
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 65 (01) : 121 - 127